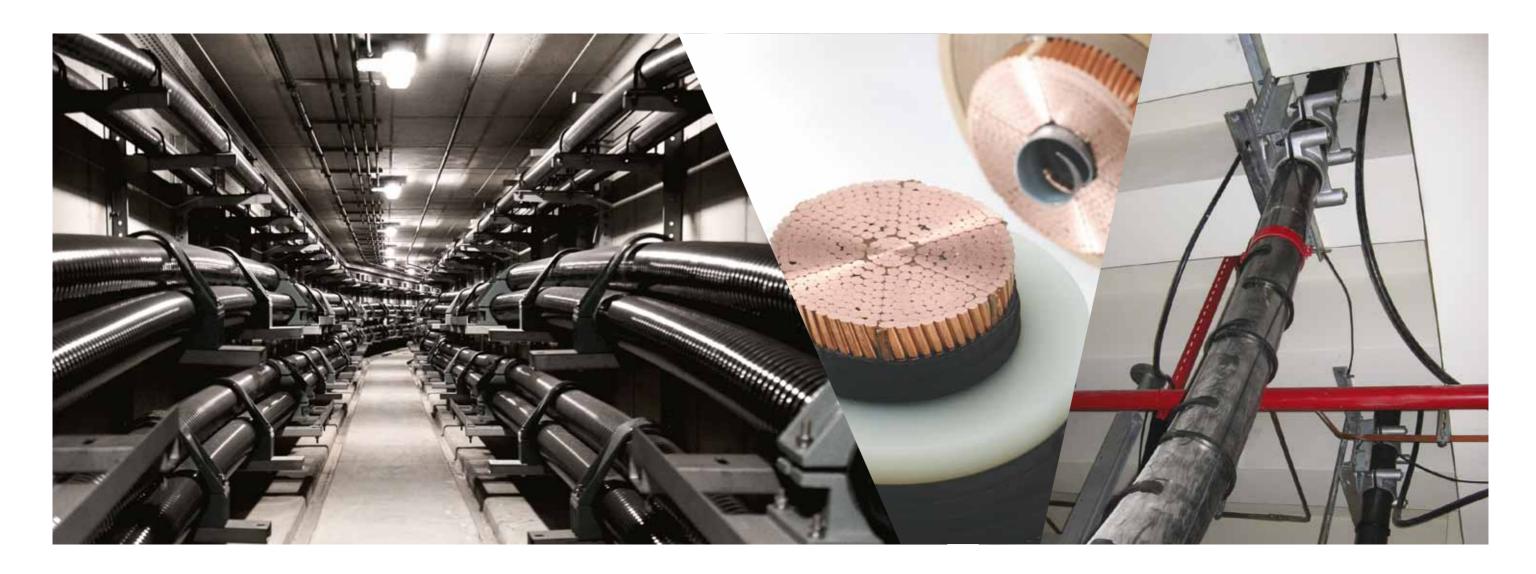

EHV CABLE SYSTEM 66~500kV XLPE Cable & Accessories

LS EHV Cable System

66~500kV XLPE Cable & Accessories

Our Philosophy

At LS Cable & System, we understand our responsibility and our potential in leading society to remarkable improvements in varied facets of human life and society. For the past many decades we successfully took the challenge of providing our clients with solutions and support systems to service their globe-spanning businesses. We recognize the significance of our contributing customer-oriented services for the betterment of the society and its operations. We believe that our responsibility should not end in mere execution of our customers' project, but should extend towards contributing our knowledge and expertise in returning value to their company and to the society within which they live. Our vision is to provide world class services and products to our clients with a sense of responsibility and accountability towards them, their employees and ultimately the society. We are determined to shoulder our responsibility of serving the society by protecting the environment. We bear the vision of alleviating the ill-effects on the ecosystem and human life using more advanced technology. We are persistently in the process of putting our philosophy in action.



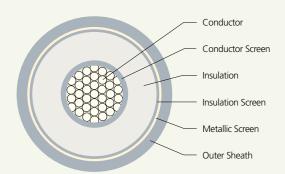
Total Solution for Underground Transmission System

LS Cable & System is one of the world's leading manufacturers of extra high voltage cable and accessories and also one of a few total solution providers of underground transmission system. We are prominently capable and facilitated in researching, designing, developing, and manufacturing products and solutions with a heritage of decades as a cable manufacturer and ceaseless invest on quality control.

We provide power system from 66kV ~ 500kV such as XLPE cables, terminations, joints and other related products as some parts of our total solution maximizing the competitive advantage in 230kV and higher voltage system. Especially, the certificate for the satisfactory completion of Type Test and Pre-qualification Test by KEMA lasted for 365 days in 400kV XLPE cable and accessories and shows the quality of full range of our products and system.

Commitment to Our Customers

As an extra high voltage cable and accessories manufacturer and a division of LS Cable & System, we never stop researching, designing, developing, and manufacturing products with the higher level of quality to address the ever-changing demands in everyday life as well as in the industry. Our quality control meets the most delicate requirements of international standards and the high level of quality is recognized both by local and international clients. Our commitment to develop and deliver solutions to address our customers' needs and challenges keep our technology on the cutting edge and our know-how in the field more valuable, which our customers highly appreciate. We are looking forward to working with you.


Contents

1.00	Design & Construction of XLPE Cable	8
2.00	Manufacturing Process & VCV Line	10
3.00	Cable Construction & Continuous Current Ratings	12
4.00	XLPE Insulated Cables	13
5.00	Correction Factors for Various Laying Conditions	42
6.00	Permissible Short Circuit Currents	44
7.00	Accessories for EHV Cable Systems	61
8.00	Monitoring & Diagnosis System	64
9.00	Appendix	

Structure of XLPE Cable

The XLPE Cable has the construction of a conductor (copper or aluminum) insulated with the cross-linked polyethylene and then shielded with metallic screen (corrugated and seamless aluminum or wire shield), to be covered by PVC or polyethylene for anti-corrosion.

Conductor

The conductor consists of annealed copper or hard aluminum stranded wires and classified into three (3) major types of concentric, compacted circular and segmental compacted circular.

The concentric is the wires wounded up concentrically, the compacted circular conductor consists of segments wounded up and then compacted. Normally the segmental compacted circular conductor has four (4) segments and is applied for the cross-section over than 800mm², to prevent the increase of A.C. resistance caused by skin effect. When the conductor's cross-section is less than 630mm², the compacted circular is applied generally.

Conductor Screen

The conductor screen consists of an extruded semi-conducting polyethylene to minimize electrical stresses due to the stranded configuration of the conductor. The semi-conducting material used for conductor screen has no deleterious effect on the conductor. Semi-conducting tape is sometimes applied as a separator.

Insulation

The insulation material is extruded cross-linked polyethylene. The conductor screen, the insulation and the insulation screen mentioned to the following clause are extruded simultaneously in one process to ensure that the screen and insulation are intimately bonded together and free from all possibilities of voids between layers.

The extrusion process is carried out under strictly controlled atmospheric conditions.

The thickness of the insulation layer is the maximum value figured out from the design of the impulse voltage and A.C. voltage.

The conventional cross-linking process by saturated steam has frequently caused deterioration of the electrical characteristics of the insulation as treeing phenomena arose when put to use for long time. But the new process by N_2 gas has enabled to protect the electrical characteristics from being deteriorated and to lessen the thickness of the insulation and accordingly the cable's outer diameter itself.

Insulation Screen

The insulation screen is provided over the insulation by extruding the semi-conducting compound concentrically and circularly to minimize the possibility of ionization on the outer surface of the dielectric.

Metallic Screen

The metallic screen consists of the wire shield, the corrugated aluminum sheath or the lead sheath. The corrugated aluminum sheath and the lead sheath is also adopted where the surface of duct is poor and where moisture is high.

Outer Sheath

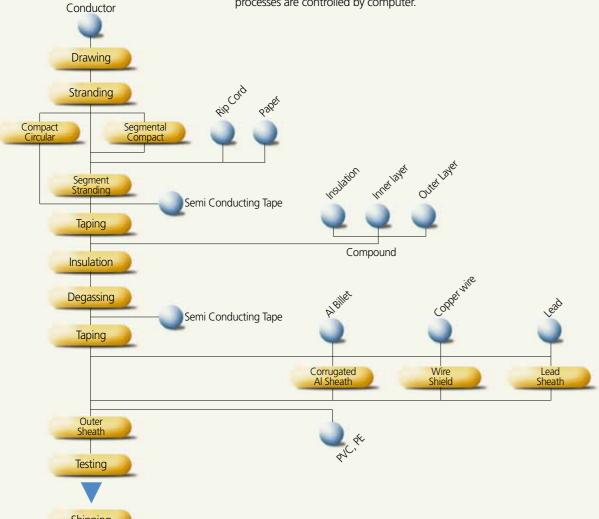
To protect the metallic sheath from electrical or chemical corrosion, it is covered by PE or PVC.

Corrugated Aluminum Sheath Cable

Smooth Welded Aluminum Sheath Cable

Lead Sheath Cable

Copper Wire Shield Cable



8 Design & Construction of XLPE Cable 9

2.00 Manufacturing Process & VCV Line

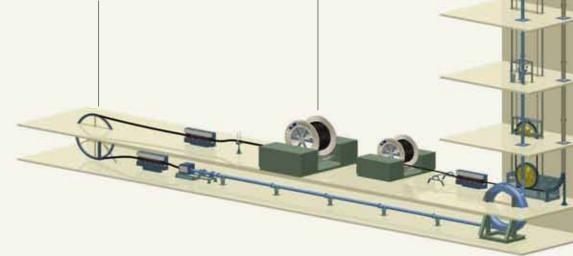
The system adopted for insulation of the XLPE Cable is VCV and N_2 gas is used for cross linking, and the line is extruded in a vertical type. The outstanding characteristics of the XLPE Cable manufactured in application of this system are :

- 1. The insulation has no eccentricity.
- 2. The cross-linking by use of N_2 gas guarantees excellent electrical characteristics of the insulation.
- 3. The simultaneous extrusion of the inner and outer semi-conducting layers and the insulation prevents treeing and other irregularities.
- 4. Uniformity of quality is maintained of all products as the manufacturing processes are controlled by computer.

Extrusion -

The conductor screen, the insulation and the insulation screen are simultaneously extruded with the compounds supplied from the clean room.

Cross-Linking and Cooling -


The corss-linking takes place in curing zone of A by circulating N_2 gas and the insulation is formed into core through precooling zone of B and cooling zone of C.

Pay Off

The conductor wound up around the drum is set at pay off to run to metering capstan.

Take Up

The cable comes to be wound up again around the drum to go into the next process.

Manufacturing Process & VCV Line 11

The continuous current capacity is calculated in accordance with IEC 60287.

Laying Conditions

Ground Temperature : 25°C
 Depth of Laying : 1.5m

3) Soil Thermal Resistivity: 1.0°Cm/W 4) Ambient Temperature: 40°C 5) Max. Conductor Temperature: 90°C 6) Cable Formation: Flat (S=2D)

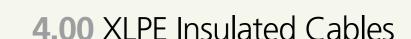
S: Distance between cables / D: Cable diameter

7) Frequency: 50Hz 8) Load factor: 100%

Maximum Permissible Conductor Temperature

Normal Operation	Emergency Operation	Short Circuit
90℃	105℃	250℃

1) Normal Operation


Normal operation is meant to be maintained through out a given period of time everyday or continuously, without affecting the operation.

2) Emergency Load

Emergency load is meant to be maintained for a short time under the condition of system breakdown or under the state of excessively loaded operation, without causing a defect.

3) Short Circuit

Short circuit is meant to cause no defect of the cable when an irregular current, flows for short time due to shorting or earthing.

- 4.01 36/66 (72.5)kV with Corrugated Aluminum Sheath
- 4.02 36/66 (72.5)kV with Smooth Welded Aluminum Sheath
- 4.03 36/66 (72.5)kV with Lead Sheath
- 4.04 36/66 (72.5)kV with Copper Wire Shield
- 4.05 64/110 (123)kV with Corrugated Aluminum Sheath
- 4.06 64/110 (123)kV with Smooth Welded Aluminum Sheath
- 4.07 64/110 (123)kV with Lead Sheath
- 4.08 64/110 (123)kV with Copper Wire Shield
- 4.09 76/132 (145)kV with Corrugated Aluminum Sheath
- 4.10 76/132 (145)kV with Smooth Welded Aluminum Sheath
- 4.11 76/132 (145)kV with Lead Sheath
- 4.12 76/132 (145)kV with Copper Wire Shield
- 4.13 87/161 (170)kV with Corrugated Aluminum Sheath
- 4.14 87/161 (170)kV with Smooth Welded Aluminum Sheath
- 4.15 87/161 (170)kV with Lead Sheath
- 4.16 87/161 (170)kV with Copper Wire Shield
- $4.17\ \ 127/230$ (245)kV with Corrugated Aluminum Sheath
- 4.18 127/230 (245)kV with Smooth Welded Aluminum Sheath
- 4.19 127/230 (245)kV with Lead Sheath
- 4.20 127/230 (245)kV with Copper Wire Shield
- 4.21 220/400 (420)kV with Corrugated Aluminum Sheath
- 4.22 220/400 (420)kV with Smooth Welded Aluminum Sheath
- 4.23 220/400 (420)kV with Lead Sheath
- 4.24 220/400 (420)kV with Copper Wire Shield
- 4.25 290/500 (550)kV with Corrugated Aluminum Sheath
- 4.26 290/500 (550)kV with Smooth Welded Aluminum Sheath
- 4.27 290/500 (550)kV with Lead Sheath
- 4.28 290/500 (550)kV with Copper Wire Shield

XLPE Insulated Cables 13

Corrugated Aluminum Sheath

Construction ■ Copper Conductor ■ XLPE Insulation

- PE(or PVC or Flame retardant PE) Outer Jacket

Continuous current ratings (load factor=100%) for one circuit in operation (Ampere)

Cross-Sectional Area (mm²)	Direct Buried			
C1055-Sectional Area (IIIIIF)	Direct Buried	Pipe Duct		Flat (S=2D)
240	524	491	598	671
300	592	556	682	770
400	671	631	781	888
500	762	714	894	1025
630	878	808	1023	1187
800	965	928	1150	1355
1000	1119	1075	1361	1615
1200	1198	1146	1460	1745
1600	1352	1357	1654	2030
2000	1468	1475	1800	2273

Constructional Data (Nominal)

	Conductor		Thickness of	Thickness of		Thickness of	Thickness of	Outer Diameter	Weight of	Max. DC Conductor	
Cross-Sectional Area					Insulation Screen Approx.						Capacitance
mm²									kg/m		
240		18.1	1.0	11.0	1.0	1.6	3.5	69	5.5	0.0754	0.20
300		20.4	1.0	11.0	1.0	1.6	3.5	72	6.3	0.0601	0.22
400	Compact Round	23.2	1.0	11.0	1.0	1.7	3.5	75	7.2	0.0470	0.23
500	Stranded	26.3	1.0	11.0	1.0	1.8	4.0	79	8.6	0.0366	0.25
630		30.2	1.0	11.0	1.0	1.8	4.0	83	10.1	0.0283	0.28
800		34.0	1.0	11.0	1.0	1.9	4.0	87	12.0	0.0221	0.30
1000		38.7	1.0	11.0	1.0	2.0	4.0	92	14.4	0.0176	0.33
1200	Segment Stranded	41.8	1.0	11.0	1.0	2.1	4.5	98	16.7	0.0151	0.35
1600	(Miliken)	48.1	1.0	11.0	1.0	2.2	4.5	105	20.9	0.0113	0.49
2000		54.3	1.0	11.0	1.0	2.4	4.5	112	25.4	0.0090	0.43

Smooth Welded Aluminum Sheath

Construction ■ Copper Conductor

- XLPE Insulation
- Smooth welded Al Sheath PE(or Flame retardant PE) Outer Jacket

Continuous current ratings (load factor=100%) for one circuit in operation (Ampere)

Cross-Sectional Area (mm²)	Direct Buried	Pipe Duct				
C10ss-sectional Area (mm²)	Direct Buried	ripe Duct		Flat (S=2D)		
240	535	477	588	667		
300	590	541	669	766		
400	672	615	767	887		
500	763	702	877	1025		
630	866	796	999	1189		
800	969	894	117	1358		
1000	1113	1026	1299	1601		
1200	1193	1104	1391	1738		
1600	1343	1247	1557	2017		
2000	1458	1358	1679	2249		

Constructional Data (Nominal)

						Outer Diameter \					
mm²		mm	mm	mm	mm	mm	mm	mm	kg/m	Ω/ km	μF/km
240		18.1	1.0	11.0	1.0	8.0	3.5	65	5.2	0.0754	0.20
300		20.4	1.0	11.0	1.0	0.8	3.5	67	5.9	0.0601	0.22
400	Compact Round	23.2	1.0	11.0	1.0	0.8	3.5	70	6.8	0.0470	0.23
500	Stranded	26.3	1.0	11.0	1.0	0.8	4.0	74	8.1	0.0366	0.25
630		30.2	1.0	11.0	1.0	0.8	4.0	78	9.5	0.0283	0.28
800		34.0	1.0	11.0	1.0	0.8	4.0	82	11.4	0.0221	0.30
1000		38.7	1.0	11.0	1.0	0.8	4.0	86	13.9	0.0176	0.33
1200	Segment Stranded	41.8	1.0	11.0	1.0	0.8	4.5	90	15.6	0.0151	0.35
1600	(Miliken)	48.1	1.0	11.0	1.0	0.8	4.5	97	19.7	0.0113	0.49
2000		54.3	1.0	11.0	1.0	0.8	4.5	102	23.8	0.0090	0.43

4.04 36/66(72.5)kV with Copper Wire Shield

Lead Sheath

- Construction
 Copper Conductor XLPE Insulation
 - PE(or PVC or Flame retardant PE) Outer Jacket

Continuous current ratings (load factor=100%) for one circuit in operation (Ampere)

	Direct Buried					
Cross-Sectional Area (mm²)	Direct Buried	Pipe Duct		Flat (S=2D)		
240	527	480	599	677		
300	597	543	685	778		
400	681	619	792	903		
500	776	709	912	1046		
630	884	812	1051	1218		
800	994	913	1191	1396		
1000	1153	1063	1420	1658		
1200	1242	1144	1538	1806		
1600	1417	1310	1771	2116		
2000	1556	1443	1953	2379		

Constructional Data (Nominal)

			Thickness of	Outer Diameter	Weight of	Max. DC Conductor					
Cross-Sectional Area											Capacitance
mm²		mm	mm	mm	mm	mm	mm	mm	kg/m	Ω/ km	µF/ km
240		18.1	1.0	11.0	1.0	1.6	3.5	61	7.3	0.0754	0.20
300		20.4	1.0	11.0	1.0	1.6	3.5	64	8.1	0.0601	0.22
400	Compact Round	23.2	1.0	11.0	1.0	1.6	3.5	66	9.1	0.0470	0.23
500	Stranded	26.3	1.0	11.0	1.0	1.6	4.0	71	10.6	0.0366	0.25
630		30.2	1.0	11.0	1.0	1.6	4.0	74	12.3	0.0283	0.28
800		34.0	1.0	11.0	1.0	1.7	4.0	78	14.6	0.0221	0.30
1000		38.7	1.0	11.0	1.0	1.7	4.0	83	17.2	0.0176	0.33
1200	Segment Stranded	41.8	1.0	11.0	1.0	1.8	4.5	87	19.4	0.0151	0.35
1600	(Miliken)	48.1	1.0	11.0	1.0	1.8	4.5	94	23.8	0.0113	0.39
2000		54.3	1.0	11.0	1.0	1.9	4.5	100	28.5	0.0090	0.43

Copper Wire Shield

- Construction
 Copper Conductor XLPE Insulation

■ Copper wire shield ■ PE(or PVC or Flame retardant PE) Outer Jacket

Continuous current ratings (load factor=100%) for one circuit in operation (Ampere)

	Direct Buried					
Cross-Sectional Area (mm²)	Direct Buried	Pipe Duct		Flat (S=2D)		
240	530	483	606	692		
300	599	544	693	795		
400	683	616	802	925		
500	780	729	929	1075		
630	886	828	1066	1247		
800	997	929	1210	1432		
1000	1173	1087	1473	1728		
1200	1270	1173	1611	1894		
1600	1465	1375	1883	2245		
2000	1627	1530	2111	2556		

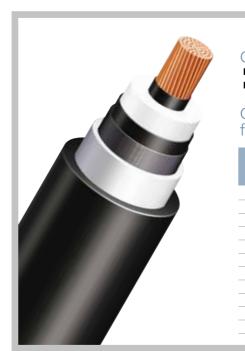
Constructional Data (Nominal)

	Conductor		Thickness of	Thickness of	Thickness of	Diameter &	Thickness of	Outer Diameter	Weight of	Max. DC Conductor	
mm ²		mm	mm	mm	mm	mm x No.	mm	mm	kg/m	Ω/km	μF/ km
240		18.1	1.0	11.0	1.0	1.2 x 40	3.5	58	4.4	0.0754	0.20
300		20.4	1.0	11.0	1.0	1.2 x 40	3.5	60	5.1	0.0601	0.22
400	Compact Round	23.2	1.0	11.0	1.0	1.2 x 40	3.5	63	5.9	0.0470	0.23
500	Stranded	26.3	1.0	11.0	1.0	1.2 x 40	4.0	66	7.2	0.0366	0.25
630		30.2	1.0	11.0	1.0	1.2 x 40	4.0	71	8.6	0.0283	0.28
800		34.0	1.0	11.0	1.0	1.2 x 40	4.0	75	10.4	0.0221	0.30
1000		38.7	1.0	11.0	1.0	1.2 x 40	4.0	80	12.7	0.0176	0.33
1200	Segment Stranded	41.8	1.0	11.0	1.0	1.2 x 40	4.5	85	14.7	0.0151	0.35
1600	(Miliken)	48.1	1.0	11.0	1.0	1.2 x 40	4.5	91	18.7	0.0113	0.39
2000		54.3	1.0	11.0	1.0	1.2 x 40	4.5	97	22.7	0.0090	0.43

Corrugated Aluminum Sheath

Construction ■ Copper Conductor ■ XLPE Insulation

- PE(or PVC or Flame retardant PE) Outer Jacket


Continuous current ratings (load factor=100%) for one circuit in operation (Ampere)

Cross-Sectional Area (mm²)	Direct Buried					
Cross-sectional Area (mm²)	Direct Buried	Pipe Duct		Flat (S=2D)		
240	520	491	592	657		
300	587	550	677	755		
400	667	639	775	873		
500	758	725	889	1006		
630	860	821	1020	1169		
800	961	915	1147	1333		
1000	1109	1057	1346	1581		
1200	1187	1180	1451	1717		
1600	1338	1332	1635	1995		
2000	1458	1447	1787	2236		
2500	1538	1526	1885	2358		

Constructional Data (Nominal)

Cross-Sectional Area							Outer Sheath				
mm²		mm	mm	mm	mm	mm	mm	mm	kg/m	Ω/ km	μF/ km
240		18.1	1.2	14.0	1.0	1.7	3.5	76	6.3	0.0754	0.17
300		20.4	1.2	14.0	1.0	1.8	3.5	78	7.0	0.0601	0.18
400	Compact Round	23.2	1.2	14.0	1.0	1.8	3.5	81	8.0	0.0470	0.20
500	Stranded	26.3	1.2	14.0	1.0	1.9	4.0	86	9.3	0.0366	0.21
630		30.2	1.2	14.0	1.0	2.0	4.0	90	11.0	0.0283	0.23
800		34.0	1.2	14.0	1.0	2.0	4.0	94	12.9	0.0221	0.25
1000		38.7	1.2	14.0	1.0	2.1	4.0	99	15.4	0.0176	0.28
1200		41.8	1.2	14.0	1.0	2.2	4.5	104	17.7	0.0151	0.30
1600	Segment Stranded	48.1	1.2	14.0	1.0	2.4	4.5	111	22.1	0.0113	0.33
2000	(Miliken)	54.3	1.2	14.0	1.0	2.5	4.5	118	26.5	0.0090	0.36
2500		63.0	1.2	14.0	1.0	2.6	4.5	128	33.0	0.0072	0.40

Smooth Welded Aluminum Sheath

Construction ■ Copper Conductor

- XLPE Insulation
- Smooth welded Al Sheath PE(or Flame retardant PE) Outer Jacket

Continuous current ratings (load factor=100%) for one circuit in operation (Ampere)

	Divost Duvind			
Cross-Sectional Area (mm²)	Direct Buried	Pipe Duct		Flat (S=2D)
240	520	479	585	659
300	587	540	665	755
400	668	616	763	874
500	759	700	871	1010
630	861	796	992	1170
800	963	894	1109	1336
1000	1106	1025	1287	1573
1200	1185	1102	1337	1707
1600	1333	1243	1541	1981
2000	1447	1353	1663	2208
2500	1556	1458	1781	2456

Constructional Data (Nominal)

							Thickness of	Outer Diameter		Max. DC Conductor	
mm²		mm	mm	mm	mm	mm	mm	mm	kg/m	Ω/km	µF/ km
240		18.1	1.2	14.0	1.0	0.9	3.5	71	5.8	0.0754	0.17
300		20.4	1.2	14.0	1.0	0.9	3.5	73	6.5	0.0601	0.18
400	Compact Round	23.2	1.2	14.0	1.0	0.9	3.5	76	7.4	0.0470	0.20
500	Stranded	26.3	1.2	14.0	1.0	0.9	4.0	80	8.8	0.0366	0.21
630		30.2	1.2	14.0	1.0	0.9	4.0	84	10.4	0.0283	0.23
800		34.0	1.2	14.0	1.0	0.9	4.0	88	12.3	0.0221	0.25
1000		38.7	1.2	14.0	1.0	0.9	4.0	92	14.7	0.0176	0.28
1200		41.8	1.2	14.0	1.0	0.9	4.5	96	16.5	0.0151	0.30
1600	Segment Stranded (Miliken)	48.1	1.2	14.0	1.0	0.9	4.5	103	20.6	0.0113	0.33
2000	(IVIIIIKEII)	54.3	1.2	14.0	1.0	0.9	4.5	109	24.8	0.0090	0.36
2500		63.0	1.2	14.0	1.0	0.9	4.5	118	30.4	0.0072	0.40

Lead Sheath

Construction ■ Copper Conductor

- Lead Sheath
- XLPE Insulation
- PE(or PVC or Flame retardant PE) Outer Jacket

Continuous current ratings (load factor=100%) for one circuit in operation (Ampere)

Cross Sastional Area (2020)				
Cross-Sectional Area (mm²)		Pipe Duct		Flat (S=2D)
240	525	482	597	668
300	594	545	682	766
400	678	621	788	889
500	772	711	907	1029
630	880	813	1045	1198
800	990	914	1184	1373
1000	1147	1063	1407	1627
1200	1236	1145	1524	1771
1600	1408	1309	1752	2074
2000	1546	1441	1931	2330
2500	1682	1577	2112	2614

Constructional Data (Nominal)

	Conductor		Thickness of	Outer Diameter	Weight of	Max. DC Conductor					
Cross-Sectional Area											
mm²		mm	mm	mm	mm	mm	mm	mm	kg/m	Ω/ km	µF/ km
240		18.1	1.2	14.0	1.0	1.6	3.5	68	8.2	0.0754	0.17
300		20.4	1.2	14.0	1.0	1.6	3.5	70	9.0	0.0601	0.18
400	Compact Round	23.2	1.2	14.0	1.0	1.6	3.5	73	10.1	0.0470	0.20
500	Stranded	26.3	1.2	14.0	1.0	1.6	4.0	77	11.6	0.0366	0.21
630		30.2	1.2	14.0	1.0	1.7	4.0	81	13.6	0.0283	0.23
800		34.0	1.2	14.0	1.0	1.8	4.0	85	15.9	0.0221	0.25
1000		38.7	1.2	14.0	1.0	1.8	4.0	89	18.6	0.0176	0.28
1200		41.8	1.2	14.0	1.0	1.8	4.5	93	20.6	0.0151	0.30
1600	Segment Stranded (Miliken)	48.1	1.2	14.0	1.0	1.9	4.5	100	25.4	0.0113	0.33
2000	(IVIIIIKEN)	54.3	1.2	14.0	1.0	2.0	4.5	106	30.2	0.0090	0.36
2500		63.0	1.2	14.0	1.0	2.2	4.5	115	37.1	0.0072	0.40

Copper Wire Shield

- Copper Conductor XLPE Insulation
- Copper wire shield PE(or PVC or Flame retardant PE) Outer Jacket

Continuous current ratings (load factor=100%) for one circuit in operation (Ampere)

Cross-Sectional Area (mm²)				Flat (S=2D)
240	528	495	605	682
300	597	559	692	783
400	681	650	800	909
500	775	739	922	1053
630	884	841	1065	1226
800	994	945	1208	1406
1000	1169	1106	1465	1695
1200	1264	1231	1595	1849
1600	1456	1415	1860	2185
2000	1618	1570	2089	2487
2500	1706	1656	2203	2623

Constructional Data (Nominal)

								Outer Diameter		Max. DC Conductor	
									Cable		
mm²		mm	mm	mm	mm	mm x No.	mm	mm	kg/m	Ω/km	µF/ km
240		18.1	1.2	14.0	1.0	1.2 x 40	3.5	64	5.0	0.0754	0.17
300		20.4	1.2	14.0	1.0	1.2 x 40	3.5	66	5.7	0.0601	0.18
400	Compact Round	23.2	1.2	14.0	1.0	1.2 x 40	3.5	69	6.6	0.0470	0.20
500	Stranded	26.3	1.2	14.0	1.0	1.2 x 40	4.0	73	7.9	0.0366	0.21
630		30.2	1.2	14.0	1.0	1.2 x 40	4.0	77	9.4	0.0283	0.23
800		34.0	1.2	14.0	1.0	1.2 x 40	4.0	81	11.2	0.0221	0.25
1000		38.7	1.2	14.0	1.0	1.2 x 40	4.0	86	13.6	0.0176	0.28
1200		41.8	1.2	14.0	1.0	1.2 x 40	4.5	91	15.6	0.0151	0.30
1600	Segment Stranded (Miliken)	48.1	1.2	14.0	1.0	1.2 x 40	4.5	97	19.6	0.0113	0.33
2000		54.3	1.2	14.0	1.0	1.2 x 40	4.5	103	23.7	0.0090	0.36
2500		63.0	1.2	14.0	1.0	1.2 x 40	4.5	111	29.0	0.0072	0.40

Corrugated Aluminum Sheath

Constructional Data (Nominal)

				Thickness of				Outer Diameter		Max. DC Conductor	
Cross-Sectional Area											
mm²		mm	mm	mm	mm	mm	mm	mm	kg/m	Ω/ km	µF/ km
240		18.1	1.5	16.0	1.3	1.8	4.5	83	7.1	0.0754	0.16
300		20.4	1.5	16.0	1.3	1.8	4.5	86	7.9	0.0601	0.17
400	Compact Round	23.2	1.5	16.0	1.3	1.9	4.5	89	8.9	0.0470	0.18
500	Stranded	26.3	1.5	16.0	1.3	2.0	4.5	92	10.2	0.0366	0.20
630		30.2	1.5	16.0	1.3	2.1	4.5	97	11.9	0.0283	0.21
800		34.0	1.5	16.0	1.3	2.2	4.5	101	14.0	0.0221	0.23
1000		38.7	1.5	16.0	1.3	2.2	4.5	106	16.6	0.0176	0.25
1200		41.8	1.5	16.0	1.3	2.3	4.5	110	18.6	0.0151	0.27
1600	Segment Stranded (Miliken)	48.1	1.5	16.0	1.3	2.4	4.5	116	22.9	0.0113	0.30
2000		54.3	1.5	16.0	1.3	2.6	4.5	124	27.4	0.0090	0.32
2500		63.0	1.5	16.0	1.3	2.8	4.5	131	34.3	0.0072	0.36

Smooth Welded Aluminum Sheath

Construction ■ Copper Conductor

- XLPE Insulation
- Smooth welded Al Sheath
- PE(or Flame retardant PE) Outer Jacket

Continuous current ratings (load factor=100%) for one circuit in operation (Ampere)

Cross-Sectional Area (mm²)	Direct Buried	Pipe Duct		Flat (S=2D)		
240	519	480	583	651		
300	586	542	663	746		
400	666	618	760	863		
500	757	702	867	998		
630	859	798	988	1156		
800	960	892	1105	1319		
1000	1102	1026	1279	1552		
1200	1180	1102	1368	1687		
1600	1327	1243	1531	1958		
2000	1441	1347	1653	2181		
2500	1549	1456	1771	2426		

Constructional Data (Nominal)

										Max. DC Conductor	
mm²		mm	mm	mm	mm	mm	mm	mm	kg/m	Ω/ km	µF/ km
240		18.1	1.5	16.0	1.3	1.0	4.5	78	6.5	0.0754	0.16
300		20.4	1.5	16.0	1.3	1.0	4.5	80	7.2	0.0601	0.17
400	Compact Round	23.2	1.5	16.0	1.3	1.0	4.5	83	8.2	0.0470	0.18
500	Stranded	26.3	1.5	16.0	1.3	1.0	4.5	86	9.5	0.0366	0.20
630		30.2	1.5	16.0	1.3	1.0	4.5	90	11.0	0.0283	0.21
800		34.0	1.5	16.0	1.3	1.0	4.5	94	13.0	0.0221	0.23
1000		38.7	1.5	16.0	1.3	1.0	4.5	98	15.5	0.0176	0.25
1200		41.8	1.5	16.0	1.3	1.0	4.5	101	17.2	0.0151	0.27
1600	Segment Stranded	48.1	1.5	16.0	1.3	1.0	4.5	108	21.4	0.0113	0.30
2000	(Miliken)	54.3	1.5	16.0	1.3	1.0	4.5	114	25.5	0.0090	0.32
2500		63.0	1.5	16.0	1.3	1.0	4.5	122	31.2	0.0072	0.36

22 XLPE Insulated Cables XLPE Insulated Cables 23

649 742

858

1151

1313

1555

1695

1972

2211

Lead Sheath

Construction ■ Copper Conductor ■ XLPE Insulation

- PE(or PVC or Flame retardant PE) Outer Jacket

Continuous current ratings (load factor=100%) for one circuit in operation (Ampere)

Cross-Sectional Area (mm²)	Direct Buried			659 756 877 1017		
Cross-sectional Area (mmr)	Direct Buried	Pipe Duct		Flat (S=2D)		
240	523	484	595	659		
300	592	547	680	756		
400	676	624	785	877		
500	770	713	903	1017		
630	878	812	1041	1182		
800	987	917	1179	1354		
1000	1143	1065	1396	1603		
1200	1231	1146	1513	1749		
1600	1403	1309	1738	2046		
2000	1540	1440	1915	2297		
2500	1674	1570	2093	2576		

Constructional Data (Nominal)

	Conductor									Max. DC Conductor	
Cross-Sectional Area											
mm²		mm	mm	mm	mm	mm	mm	mm	kg/m	Ω/ km	μF/ km
240		18.1	1.5	16.0	1.3	1.6	4.5	74	9.2	0.0754	0.16
300		20.4	1.5	16.0	1.3	1.6	4.5	77	10.0	0.0601	0.17
400	Compact Round	23.2	1.5	16.0	1.3	1.7	4.5	80	11.4	0.0470	0.18
500	Stranded	26.3	1.5	16.0	1.3	1.7	4.5	83	12.7	0.0366	0.20
630		30.2	1.5	16.0	1.3	1.8	4.5	87	14.8	0.0283	0.21
800		34.0	1.5	16.0	1.3	1.8	4.5	91	16.9	0.0221	0.23
1000		38.7	1.5	16.0	1.3	1.9	4.5	95	20.0	0.0176	0.25
1200		41.8	1.5	16.0	1.3	1.9	4.5	98	21.9	0.0151	0.27
1600	Segment Stranded (Miliken)	48.1	1.5	16.0	1.3	2.0	4.5	105	26.7	0.0113	0.30
2000		54.3	1.5	16.0	1.3	2.1	4.5	111	31.6	0.0090	0.32
2500		63.0	1.5	16.0	1.3	2.3	4.5	120	38.7	0.0072	0.36

Copper Wire Shield

- Construction
 Copper Conductor XLPE Insulation
- Copper wire shield PE(or PVC or Flame retardant PE) Outer Jacket

Continuous current ratings (load factor=100%) for one circuit in operation (Ampere)

Cross-Sectional Area (mm²)	Direct Buried	Pipe Duct		Flat (S=2D)
240	525	492	601	673
300	593	555	688	774
400	675	632	792	896
500	767	716	908	1033
630	872	811	1045	1200
800	979	932	1182	1374
1000	1145	1087	1420	1649
1200	1233	1212	1539	1801
1600	1414	1388	1784	2125
2000	1569	1532	2003	2418
2500	1653	1614	2111	2548

Constructional Data (Nominal)

	Conductor		Thickness of	Thickness of	Thickness of	Diameter &	Thickness of	Outer Diameter	Weight of	Max. DC Conductor	
Cross-Sectional Area											
mm²		mm	mm	mm	mm	mm x No.	mm	mm	kg/m	Ω/ km	μF/ km
240		18.1	1.5	16.0	1.3	1.5 x 80	4.5	70	6.5	0.0754	0.16
300		20.4	1.5	16.0	1.3	1.5 x 80	4.5	72	7.1	0.0601	0.17
400	Compact Round	23.2	1.5	16.0	1.3	1.5 x 80	4.5	75	8.1	0.0470	0.18
500	Stranded	26.3	1.5	16.0	1.3	1.5 x 80	4.5	80	9.5	0.0366	0.20
630		30.2	1.5	16.0	1.3	1.5 x 80	4.5	84	11.0	0.0283	0.21
800		34.0	1.5	16.0	1.3	1.5 x 80	4.5	88	12.9	0.0221	0.23
1000		38.7	1.5	16.0	1.3	1.5 x 80	4.5	93	15.3	0.0176	0.25
1200		41.8	1.5	16.0	1.3	1.5 x 80	4.5	96	17.1	0.0151	0.27
1600	Segment Stranded (Miliken)	48.1	1.5	16.0	1.3	1.5 x 80	4.5	102	21.2	0.0113	0.30
2000	(IVIIIKeri)	54.3	1.5	16.0	1.3	1.5 x 80	4.5	110	25.8	0.0090	0.32
2500		63.0	1.5	16.0	1.3	1.5 x 80	4.5	118	31.4	0.0072	0.36

4.14 87/161(170)kV with Smooth Welded Aluminum Sheath

Corrugated Aluminum Sheath

Construction ■ Copper Conductor

- XLPE Insulation
- PE(or PVC or Flame retardant PE) Outer Jacket

Continuous current ratings (load factor=100%) for one circuit in operation (Ampere)

Cross-Sectional Area (mm²)		Pipe Duct		Flat (S=2D)			
300	584	558	669	740			
400	664	634	768	855			
500	754	718	879	988			
630	853	811	1009	1146			
800	953	938	1134	1307			
1000	1100	1087	1328	1548			
1200	1179	1163	1429	1684			
1600	1331	1311	1627	1967			
2000	1447	1485	1774	2199			
2500	1523	1563	1868	2315			

Constructional Data (Nominal)

	Conductor		Thickness of	Outer Diameter	Weight of	Max. DC Conductor					
Cross-Sectional Area											
mm²									kg/m		
300		20.4	1.5	17	1.3	1.9	4.5	87	8.4	0.0601	0.16
400		23.2	1.5	17	1.3	1.9	4.5	91	9.4	0.0470	0.18
500	Compact Round Stranded	26.3	1.5	17	1.3	2.0	4.5	94	10.7	0.0366	0.19
630	Strantieu	30.2	1.5	17	1.3	2.1	4.5	98	12.3	0.0283	0.21
800		34.0	1.5	17	1.3	2.2	4.5	102	14.4	0.0221	0.22
1000		38.7	1.5	17	1.3	2.3	4.5	108	17.0	0.0176	0.24
1200		41.8	1.5	17	1.3	2.3	4.5	111	19.0	0.0151	0.26
1600	Segment Stranded	48.1	1.5	17	1.3	2.5	4.5	119	23.5	0.0113	0.28
2000	(Miliken)	54.3	1.5	17	1.3	2.6	4.5	125	28.0	0.0090	0.31
2500		63.0	1.5	17	1.3	2.8	4.5	134	34.5	0.0072	0.34

Smooth Welded Aluminum Sheath

- Construction
 Copper Conductor ■ Smooth welded Al Sheath
 - XLPE Insulation
 - PE(or Flame retardant PE) Outer Jacket

Continuous current ratings (load factor=100%) for one circuit in operation (Ampere)

	Divost Duvind					
Cross-Sectional Area (mm²)	Direct Buried	Pipe Duct		Flat (S=2D)		
240	518	480	581	648		
300	584	543	661	742		
400	665	617	757	859		
500	755	703	864	992		
630	856	796	984	1150		
800	958	893	1101	1312		
1000	1099	1027	1274	1542		
1200	1176	1099	1362	1676		
1600	1323	1239	1525	1945		
2000	1436	1347	1646	2167		
2500	1544	1451	1765	2410		

Constructional Data (Nominal)

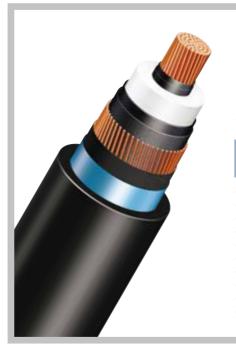
	Conductor		Thickness of	Outer Diameter	Weight of	Max. DC Conductor					
Cross-Sectional Area											
mm²		mm	mm	mm	mm	mm	mm	mm	kg/m	Ω/km	μF/ km
240		18.1	1.5	17	1.3	1.1	4.5	79	6.8	0.0754	0.15
300		20.4	1.5	17	1.3	1.1	4.5	83	7.5	0.0601	0.16
400	Compact Round	23.2	1.5	17	1.3	1.1	4.5	85	8.5	0.0470	0.18
500	Stranded	26.3	1.5	17	1.3	1.1	4.5	89	9.8	0.0366	0.19
630		30.2	1.5	17	1.3	1.1	4.5	92	11.4	0.0283	0.21
800		34.0	1.5	17	1.3	1.1	4.5	96	13.4	0.0221	0.22
1000		38.7	1.5	17	1.3	1.1	4.5	101	15.9	0.0176	0.24
1200	-	41.8	1.5	17	1.3	1.1	4.5	104	17.6	0.0151	0.26
1600	Segment Stranded	48.1	1.5	17	1.3	1.1	4.5	110	21.8	0.0113	0.28
2000	(Miliken)	54.3	1.5	17	1.3	1.1	4.5	116	26.0	0.0090	0.31
2500	-	63.0	1.5	17	1.3	1.1	4.5	125	31.7	0.0072	0.34

4.16 87/161(170)kV with Copper Wire Shield

Lead Sheath

Construction ■ Copper Conductor

- XLPE Insulation
 - PE(or PVC or Flame retardant PE) Outer Jacket


Continuous current ratings (load factor=100%) for one circuit in operation (Ampere)

Cross-Sectional Area (mm²)	Direct Buried	d Pipe Duct				
Cross-sectional Area (mmr)	Direct Buried	Pipe Duct		Flat (S=2D)		
240	522	483	593	656		
300	591	546	678	752		
400	674	626	782	872		
500	768	712	901	1011		
630	876	814	1038	1175		
800	985	915	1176	1345		
1000	1141	1062	1391	1592		
1200	1228	1147	1506	1736		
1600	1399	1311	1731	2031		
2000	1535	1441	1907	2280		
2500	1670	1570	2084	2556		

Constructional Data (Nominal)

	Conductor		Thickness of	Outer Diameter	Weight of	Max. DC Conductor					
Cross-Sectional Area											Capacitance
mm²		mm	mm	mm	mm	mm	mm	mm	kg/m	Ω/ km	μF/ km
240		18.1	1.5	17	1.3	1.7	4.5	76	9.6	0.0754	0.15
300		20.4	1.5	17	1.3	1.7	4.5	80	10.7	0.0601	0.16
400	Compact Round	23.2	1.5	17	1.3	1.7	4.5	82	11.8	0.0470	0.18
500	Stranded	26.3	1.5	17	1.3	1.8	4.5	86	13.5	0.0366	0.19
630		30.2	1.5	17	1.3	1.8	4.5	90	15.3	0.0283	0.21
800		34.0	1.5	17	1.3	1.8	4.5	93	17.5	0.0221	0.22
1000		38.7	1.5	17	1.3	1.9	4.5	98	20.5	0.0176	0.24
1200		41.8	1.5	17	1.3	1.9	4.5	101	22.4	0.0151	0.26
1600	Segment Stranded (Miliken)	48.1	1.5	17	1.3	2.0	4.5	108	27.3	0.0113	0.28
2000	(IVIIIIKEII)	54.3	1.5	17	1.3	2.1	4.5	114	32.2	0.0090	0.31
2500		63.0	1.5	17	1.3	2.3	4.5	123	39.3	0.0072	0.34

Copper Wire Shield

- Construction
 Copper Conductor
- Copper wire shield
 - PE(or PVC or Flame retardant PE) Outer Jacket

Continuous current ratings (load factor=100%) for one circuit in operation (Ampere)

Cross-Sectional Area (mm²)		Pipe Duct	Trefoil	Flat (S=2D)		
300	591	553	684	765		
400	673	629	789	887		
500	766	713	907	1027		
630	871	829	1043	1193		
800	977	928	1181	1367		
1000	1143	1081	1415	1639		
1200	1232	1208	1535	1790		
1600	1404	1382	1765	2100		
2000	1554	1523	1973	2384		
2500	1636	1603	2077	2510		

Constructional Data (Nominal)

	Conductor		Thickness of	Thickness of	Thickness of	Diameter &	Thickness of	Outer Diameter	Weight of	Max. DC Conductor	
Cross-Sectional Area											
mm²		mm	mm	mm	mm	mm x No.	mm	mm	kg/m	Ω/km	µF/ km
300		20.4	1.5	17	1.3	1.5 x 80	4.5	76	7.6	0.0601	0.16
400		23.2	1.5	17	1.3	1.5 x 80	4.5	79	8.5	0.0470	0.18
500	Compact Round	26.3	1.5	17	1.3	1.5 x 80	4.5	82	9.7	0.0366	0.19
630	Stranded	30.2	1.5	17	1.3	1.5 x 80	4.5	86	11.3	0.0283	0.21
800		34.0	1.5	17	1.3	1.5 x 80	4.5	90	13.2	0.0221	0.22
1000		38.7	1.5	17	1.3	1.5 x 80	4.5	95	15.5	0.0176	0.24
1200		41.8	1.5	17	1.3	1.5 x 80	4.5	98	17.4	0.0151	0.26
1600	Segment Stranded	48.1	1.5	17	1.3	1.5 x 80	4.5	104	21.5	0.0113	0.28
2000	(Miliken)	54.3	1.5	17	1.3	1.5 x 80	4.5	110	25.6	0.0090	0.31
2500		63.0	1.5	17	1.3	1.5 x 80	4.5	118	31.1	0.0072	0.34

Construction ■ Copper Conductor

- XLPE Insulation
- PE(or PVC or Flame retardant PE) Outer Jacket

Continuous current ratings (load factor=100%) for one circuit in operation (Ampere)

	Direct Buried		In Air				
Cross-Sectional Area (mm²)	Direct Buried	Pipe Duct		Flat (S=2D)			
400	661	621	750	849			
500	749	703	851	980			
630	848	797	964	1133			
800	946	891	1072	1291			
1000	1079	1015	1222	1512			
1200	1151	1085	1297	1640			
1600	1290	1217	1438	1896			
2000	1395	1319	1540	2109			
2500	1500	1420	1641	2344			

Constructional Data (Nominal)

								Outer Diameter			
Cross-Sectional Area											
mm²									kg/m		
400		23.2	1.5	20.0	1.3	2.2	4.5	102	10.9	0.0470	0.16
500	Compact Round	26.3	1.5	20.0	1.3	2.3	4.5	106	12.3	0.0366	0.17
630	Stranded	30.2	1.5	20.0	1.3	2.3	4.5	110	14.0	0.0283	0.18
800		34.0	1.5	20.0	1.3	2.4	4.5	114	16.2	0.0221	0.20
1000		38.7	1.5	20.0	1.3	2.5	4.5	119	18.9	0.0176	0.21
1200		41.8	1.5	20.0	1.3	2.6	4.5	122	20.8	0.0151	0.22
1600	Segment Stranded (Miliken)	48.1	1.5	20.0	1.3	2.7	4.5	129	25.3	0.0113	0.25
2000	(IVIIIIKEII)	54.3	1.5	20.0	1.3	2.8	4.5	135	29.8	0.0090	0.27
2500		63.0	1.5	20.0	1.3	3.0	4.5	145	36.1	0.0072	0.30

Smooth Welded Aluminum Sheath

Construction ■ Copper Conductor

- Smooth welded Al Sheath
- XLPE Insulation ■ PE(or Flame retardant PE) Outer Jacket

Continuous current ratings (load factor=100%) for one circuit in operation (Ampere)

Cross-Sectional Area (mm²)	Direct Buried	Pipe Duct		Flat (S=2D)		
400	660	615	751	847		
500	749	700	857	979		
630	849	792	975	1133		
800	949	888	1091	1292		
1000	1087	1016	1260	1518		
1200	1164	1090	1347	1649		
1600	1308	1228	1508	1913		
2000	1419	1335	1629	2131		
2500	1525	1437	1747	2370		

Constructional Data (Nominal)

				Thickness of				Outer Diameter		Max. DC Conductor	
Cross-Sectional Area									Cable		
mm ²		mm	mm	mm	mm	mm	mm	mm	kg/m	Ω/km	μF/ km
400		23.2	1.5	20.0	1.3	1.2	4.5	91	9.3	0.0470	0.16
500	Compact Round	26.3	1.5	20.0	1.3	1.2	4.5	95	10.6	0.0366	0.17
630	Stranded	30.2	1.5	20.0	1.3	1.2	4.5	98	12.2	0.0283	0.18
800		34.0	1.5	20.0	1.3	1.2	4.5	102	14.3	0.0221	0.20
1000		38.7	1.5	20.0	1.3	1.2	4.5	107	16.8	0.0176	0.21
1200		41.8	1.5	20.0	1.3	1.2	4.5	110	18.5	0.0151	0.22
1600	Segment Stranded (Miliken)	48.1	1.5	20.0	1.3	1.2	4.5	116	22.8	0.0113	0.25
2000	(IVIIIIKEN)	54.3	1.5	20.0	1.3	1.2	4.5	122	27.0	0.0090	0.27
2500		63.0	1.5	20.0	1.3	1.2	4.5	131	32.8	0.0072	0.30

4.20 127/230(245)kV with Copper Wire Shield

Lead Sheath

Construction ■ Copper Conductor

■ XLPE Insulation

■ PE(or PVC or Flame retardant PE) Outer Jacket

Continuous current ratings (load factor=100%) for one circuit in operation (Ampere)

Cross-Sectional Area (mm²)		Pipe Duct		Flat (S=2D)		
400	669	624	776	860		
500	762	710	893	996		
630	869	811	1028	1157		
800	977	911	1165	1324		
1000	1130	1056	1376	1565		
1200	1216	1136	1488	1707		
1600	1385	1301	1708	1994		
2000	1518	1424	1881	2237		
2500	1649	1555	2054	2506		

Constructional Data (Nominal)

			Thickness of	Outer Diameter	Weight of	Max. DC Conductor					
Cross-Sectional Area											Capacitance
mm²		mm	mm	mm	mm	mm	mm	mm	kg/m	Ω/km	μF/ km
400		23.2	1.5	20.0	1.3	1.8	4.5	88	13.2	0.0470	0.16
500	Compact Round	26.3	1.5	20.0	1.3	1.8	4.5	92	14.6	0.0366	0.17
630	Stranded	30.2	1.5	20.0	1.3	1.9	4.5	96	16.8	0.0283	0.18
800		34.0	1.5	20.0	1.3	1.9	4.5	99	19.0	0.0221	0.20
1000		38.7	1.5	20.0	1.3	1.9	4.5	104	21.8	0.0176	0.21
1200		41.8	1.5	20.0	1.3	2.0	4.5	107	24.0	0.0151	0.22
1600	Segment Stranded (Miliken)	48.1	1.5	20.0	1.3	2.1	4.5	114	29.0	0.0113	0.25
2000	(Milikeri) –	54.3	1.5	20.0	1.3	2.2	4.5	120	34.1	0.0090	0.27
2500		63.0	1.5	20.0	1.3	2.4	4.5	129	41.3	0.0072	0.30

Copper Wire Shield

Construction ■ Copper Conductor

■ Copper wire shield ■ PE(or PVC or Flame retardant PE) Outer Jacket

Continuous current ratings (load factor=100%) for one circuit in operation (Ampere)

	Direct Buried	Pipe Duct				
Cross-Sectional Area (mm²)	Direct Buried	Pipe Duct		Flat (S=2D)		
400	672	624	785	867		
500	766	713	906	1005		
630	874	815	1047	1168		
800	984	918	1191	1338		
1000	1141	1067	1418	1584		
1200	1231	1150	1543	1729		
1600	1409	1319	1795	2026		
2000	1553	1457	2003	2280		
2500	1702	1600	2231	2567		

Constructional Data (Nominal)

							Thickness of	Outer Diameter		Max. DC Conductor	
Cross-Sectional Area											
mm ²		mm	mm	mm	mm	mm x No.	mm	mm	kg/m	Ω/ km	µF/ km
400		23.2	1.5	20.0	1.3	1.5 x 80	4.5	87	9.4	0.0470	0.16
500	Compact Round	26.3	1.5	20.0	1.3	1.5 x 80	4.5	90	10.6	0.0366	0.17
630	Stranded	30.2	1.5	20.0	1.3	1.5 x 80	4.5	94	12.3	0.0283	0.18
800		34.0	1.5	20.0	1.3	1.5 x 80	4.5	98	14.2	0.0221	0.20
1000		38.7	1.5	20.0	1.3	1.5 x 80	4.5	102	16.7	0.0176	0.21
1200		41.8	1.5	20.0	1.3	1.5 x 80	4.5	105	18.4	0.0151	0.22
1600	Segment Stranded (Miliken)	48.1	1.5	20.0	1.3	1.5 x 80	4.5	112	22.5	0.0113	0.25
2000	(IVIIIIKEN)	54.3	1.5	20.0	1.3	1.5 x 80	4.5	118	26.7	0.0090	0.27
2500		63.0	1.5	20.0	1.3	1.5 x 80	4.5	126	32.4	0.0072	0.30

Corrugated Aluminum Sheath

Construction ■ Copper Conductor

- XLPE Insulation
- PE(or PVC or Flame retardant PE) Outer Jacket

Continuous current ratings (load factor=100%) for one circuit in operation (Ampere)

			In Air			
Cross-Sectional Area (mm²)		Pipe Duct		Flat (S=2D)		
630	824	781	937	1090		
800	919	869	1043	1241		
1000	1048	992	1188	1452		
1200	1119	1058	1265	1575		
1600	1254	1187	1405	1822		
2000	1359	1288	1511	2028		
2500	1465	1393	1621	2255		
3000	1548	1474	1701	2433		

Constructional Data (Nominal)

	Conductor							Outer Diameter		Max. DC Conductor	
Cross-Sectional Area											
mm²									kg/m		
630	Compact Round	30.2	1.7	26.0	1.7	2.6	6	127	17.4	0.0283	0.15
800	Stranded	34.0	1.7	26.0	1.7	2.7	6	132	19.7	0.0221	0.17
1000		38.7	1.7	26.0	1.7	2.8	6	136	22.6	0.0176	0.18
1200		41.8	1.7	26.0	1.7	2.8	6	139	24.4	0.0151	0.19
1600	Segment Stranded	48.1	1.7	26.0	1.7	3.0	6	146	29.3	0.0113	0.20
2000	(Miliken)	54.3	1.7	26.0	1.7	3.1	6	153	34.0	0.0090	0.22
2500	-	63.0	1.7	26.0	1.7	3.2	6	164	40.5	0.0072	0.24
3000		69.0	1.7	26.0	1.7	3.4	6	171	46.0	0.0060	0.26

Smooth Welded Aluminum Sheath

Construction ■ Copper Conductor

- XLPE Insulation
- Smooth welded Al Sheath PE(or Flame retardant PE) Outer Jacket

Continuous current ratings (load factor=100%) for one circuit in operation (Ampere)

Cross-Sectional Area (mm²)	Direct Buried	Pipe Duct		Flat (S=2D)		
400	660	615	751	847		
500	749	700	857	979		
630	849	792	975	1133		
800	949	888	1091	1292		
1000	1087	1016	1260	1518		
1200	1164	1090	1347	1649		
1600	1308	1228	1508	1913		
2000	1419	1335	1629	2131		
2500	1525	1437	1747	2370		

Constructional Data (Nominal)

				Thickness of				Outer Diameter		Max. DC Conductor	
Cross-Sectional Area									Cable		
mm ²		mm	mm	mm	mm	mm	mm	mm	kg/m	Ω/ km	µF/ km
400		23.2	1.5	20.0	1.3	1.2	4.5	91	9.3	0.0470	0.16
500	Compact Round	26.3	1.5	20.0	1.3	1.2	4.5	95	10.6	0.0366	0.17
630	Stranded	30.2	1.5	20.0	1.3	1.2	4.5	98	12.2	0.0283	0.18
800		34.0	1.5	20.0	1.3	1.2	4.5	102	14.3	0.0221	0.20
1000		38.7	1.5	20.0	1.3	1.2	4.5	107	16.8	0.0176	0.21
1200		41.8	1.5	20.0	1.3	1.2	4.5	110	18.5	0.0151	0.22
1600	Segment Stranded (Miliken)	48.1	1.5	20.0	1.3	1.2	4.5	116	22.8	0.0113	0.25
2000	(Miliken)	54.3	1.5	20.0	1.3	1.2	4.5	122	27.0	0.0090	0.27
2500		63.0	1.5	20.0	1.3	1.2	4.5	131	32.8	0.0072	0.30

Lead Sheath

Construction ■ Copper Conductor ■ XLPE Insulation

- PE(or PVC or Flame retardant PE) Outer Jacket

Continuous current ratings (load factor=100%) for one circuit in operation (Ampere)

Cross-Sectional Area (mm²)		Pipe Duct		Flat (S=2D)		
630	844	793	1000	1111		
800	949	892	1132	1270		
1000	1094	1031	1329	1497		
1200	1176	1107	1436	1631		
1600	1336	1259	1645	1902		
2000	1462	1380	1810	2130		
2500	1584	1496	1973	2381		
3000	1674	1584	2087	2573		

Constructional Data (Nominal)

								Outer Diameter		Max. DC Conductor	
Cross-Sectional Area											
mm²		mm	mm	mm	mm	mm	mm	mm	kg/m	Ω/ km	µF/ km
630	Compact Round	30.2	1.7	26.0	1.7	2.0	6.0	112	20.4	0.0283	0.15
800	Stranded	34.0	1.7	26.0	1.7	2.1	6.0	116	23.1	0.0221	0.17
1000		38.7	1.7	26.0	1.7	2.2	6.0	121	26.4	0.0176	0.18
1200		41.8	1.7	26.0	1.7	2.3	6.0	124	28.8	0.0151	0.19
1600	Segment Stranded	48.1	1.7	26.0	1.7	2.4	6.0	131	34.1	0.0113	0.20
2000	(Miliken)	54.3	1.7	26.0	1.7	2.5	6.0	137	39.4	0.0090	0.22
2500	-	63.0	1.7	26.0	1.7	2.7	6.0	146	47.0	0.0072	0.24
3000		69.0	1.7	26.0	1.7	2.9	6.0	152	53.6	0.0060	0.26

Copper Wire Shield

- Construction
 Copper Conductor XLPE Insulation
- Copper wire shield PE(or PVC or Flame retardant PE) Outer Jacket

Continuous current ratings (load factor=100%)

for one circuit in operation (Ampere)

	Divost Duvind					
Cross-Sectional Area (mm²)	Direct Buried	Pipe Duct		Flat (S=2D)		
630	850	798	1019	1121		
800	957	900	1160	1282		
1000	1108	1040	1374	1514		
1200	1194	1124	1494	1651		
1600	1364	1286	1737	1932		
2000	1502	1418	1939	2171		
2500	1643	1553	2159	2440		
3000	1754	1661	2328	2650		

Constructional Data (Nominal)

										Max. DC	
Cross-Sectional Area											
mm ²		mm	mm	mm	mm	mm x No.	mm	mm	kg/m	Ω/km	µF/ km
630	Compact Round	30.2	1.7	26.0	1.7	1.7 x 80	6.0	111	15.0	0.0283	0.15
800	Stranded	34.0	1.7	26.0	1.7	1.7 x 80	6.0	114	17.0	0.0221	0.17
1000		38.7	1.7	26.0	1.7	1.7 x 80	6.0	119	19.6	0.0176	0.18
1200		41.8	1.7	26.0	1.7	1.7 x 80	6.0	122	21.4	0.0151	0.19
1600	Segment Stranded	48.1	1.7	26.0	1.7	1.7 x 80	6.0	128	25.7	0.0113	0.20
2000	(Miliken)	54.3	1.7	26.0	1.7	1.7 x 80	6.0	134	30.0	0.0090	0.22
2500	-	63.0	1.7	26.0	1.7	1.7 x 80	6.0	143	35.9	0.0072	0.24
3000		69.0	1.7	26.0	1.7	1.7 x 80	6.0	149	40.8	0.0060	0.26

- Construction
 Copper Conductor XLPE Insulation

- PE(or PVC or Flame retardant PE) Outer Jacket

Continuous current ratings (load factor=100%) for one circuit in operation (Ampere)

	Pipe Duct		Flat (S=2D)		
910	890	1080	1221		
1052	1036	1270	1447		
1128	1110	1361	1565		
1281	1284	1555	1825		
1400	1400	1700	2050		
1470	1470	1785	2150		
1560	1558	1895	2280		
	910 1052 1128 1281 1400 1470	910 890 1052 1036 1128 1110 1281 1284 1400 1400 1470 1470	910 890 1080 1052 1036 1270 1128 1110 1361 1281 1284 1555 1400 1400 1700 1470 1470 1785		

Constructional Data (Nominal)

	Conductor							Outer Diameter		Max. DC Conductor	
Cross-Sectional Area											
mm²									kg/m		
800	Compact Round Stranded	34.0	2.5	34.0	2.0	3.0	6	148	24.6	0.0221	0.14
1000		38.7	2.5	32.0	2.0	3.0	6	146	26.2	0.0176	0.16
1200		41.8	2.0	32.0	2.0	3.0	6	150	28.5	0.0151	0.16
1600	Segment Stranded	48.1	2.0	30.0	2.0	3.1	6	153	32.1	0.0113	0.19
2000	(Miliken)	54.3	2.0	30.0	2.0	3.2	6	158	36.8	0.0090	0.20
2500	-	63.0	2.0	30.0	2.0	3.3	6	168	43.6	0.0072	0.23
3000		69.0	2.0	30.0	2.0	3.5	6	178	48.8	0.0060	0.24

Smooth Welded Aluminum Sheath

- Construction
 Copper Conductor
- Smooth welded Al Sheath PE(or Flame retardant PE) Outer Jacket
- XLPE Insulation

Continuous current ratings (load factor=100%) for one circuit in operation (Ampere)

Direct Buried	Pipe Duct		Flat (S=2D)		
904	857	1039	1201		
1031	975	1196	1413		
1103	1042	1281	1536		
1235	1167	1439	1788		
1337	1265	1556	1991		
1433	1356	1671	2211		
1505	1426	1753	2380		
	1031 1103 1235 1337 1433	904 857 1031 975 1103 1042 1235 1167 1337 1265 1433 1356	Direct Buried Pipe Duct Trefoil 904 857 1039 1031 975 1196 1103 1042 1281 1235 1167 1439 1337 1265 1556 1433 1356 1671		

Constructional Data (Nominal)

								Outer Diameter		Max. DC Conductor	
mm ²		mm	mm	mm	mm	mm	mm	mm	kg/m	Ω/ km	μF/ km
800	Compact Round Stranded	34.0	2.5	34.0	2.0	1.3	6	137	20.3	0.0221	0.14
1000		38.7	2.5	32.0	2.0	1.3	6	137	22.3	0.0176	0.16
1200		41.8	2.0	32.0	2.0	1.3	6	139	24.0	0.0151	0.16
1600	Segment Stranded	48.1	2.0	30.0	2.0	1.3	6	142	27.7	0.0113	0.19
2000	(Miliken)	54.3	2.0	30.0	2.0	1.3	6	148	32.1	0.0090	0.20
2500	-	63.0	2.0	30.0	2.0	1.3	6	156	38.2	0.0072	0.23
3000		69.0	2.0	30.0	2.0	1.3	6	162	43.4	0.0060	0.24

Lead Sheath

Construction
■ Copper Conductor ■ XLPE Insulation

■ PE(or PVC or Flame retardant PE) Outer Jacket

Continuous current ratings (load factor=100%) for one circuit in operation (Ampere)

Cross-Sectional Area (mm²)		Pipe Duct		Flat (S=2D)		
800	931	883	1103	1225		
1000	1070	1013	1293	1449		
1200	1151	1089	1399	1580		
1600	1303	1229	1605	1852		
2000	1424	1344	1764	2072		
2500	1539	1458	1921	2314		
3000	1630	1546	2041	2502		

Constructional Data (Nominal)

								Outer Diameter		Max. DC Conductor	
mm²		mm	mm	mm	mm	mm	mm	mm	kg/m	Ω/ km	µF/ km
800	Compact Round Stranded	34.0	2.5	34.0	2.0	2.5	6	135	29.4	0.0221	0.14
1000		38.7	2.5	32.0	2.0	2.5	6	135	31.4	0.0176	0.16
1200		41.8	2.0	32.0	2.0	2.5	6	137	33.2	0.0151	0.16
1600	Segment Stranded	48.1	2.0	30.0	2.0	2.6	6	140	37.6	0.0113	0.19
2000	(Miliken)	54.3	2.0	30.0	2.0	2.7	6	146	43.0	0.0090	0.20
2500		63.0	2.0	30.0	2.0	2.9	6	155	50.9	0.0072	0.23
3000	-	69.0	2.0	30.0	2.0	2.9	6	161	56.6	0.0060	0.24

Copper Wire Shield

Construction

■ Copper Conductor
■ Copper wire shield
■ PE(or PVC or Flame retardant PE) Outer Jacket

Continuous current ratings (load factor=100%) for one circuit in operation (Ampere)

	Direct Buried					
Cross-Sectional Area (mm²)	Direct Buried	Pipe Duct		Flat (S=2D)		
800	942	891	1134	1237		
1000	1087	1026	1342	1466		
1200	1173	1109	1462	1601		
1600	1336	1260	1703	1883		
2000	1470	1389	1901	2115		
2500	1606	1518	2116	2375		
3000	1714	1622	2282	2579		

Constructional Data (Nominal)

	Conductor										
									Weight of Cable		
mm²		mm	mm	mm	mm	mm x No.	mm	mm	kg/m	Ω/ km	μF/ km
800	Compact Round Stranded	34.0	2.5	34.0	2.0	2.0 x 80	6.0	133	20.9	0.0221	0.14
1000		38.7	2.5	32.0	2.0	2.0 x 80	6.0	133	22.8	0.0176	0.16
1200		41.8	2.0	32.0	2.0	2.0 x 80	6.0	136	24.5	0.0151	0.16
1600	Segment Stranded	48.1	2.0	30.0	2.0	2.0 x 80	6.0	138	28.1	0.0113	0.19
2000	(Miliken)	54.3	2.0	30.0	2.0	2.0 x 80	6.0	144	32.5	0.0090	0.20
2500		63.0	2.0	30.0	2.0	2.0 x 80	6.0	153	38.5	0.0072	0.23
3000	-	69.0	2.0	30.0	2.0	2.0 x 80	6.0	160	43.5	0.0060	0.24

To determine current capacity for the various laying conditions than those indicated on the every tables, multiply table values by the correction factors shown below.

Correction Factors for Various Ambient Air Temperature

	20℃	25℃	30℃	35℃	40°C	45℃	50℃
Rating Factor	1.2	1.16	1.10	1.05	1.0	0.94	0.88

Correction Factors for Various Ground Temperature

,		15℃	20℃	25℃	30℃	35℃	40°C	45℃
	Rating Factor	1.08	1.04	1.0	0.96	.091	0.87	0.83

Correction Factors for Various Thermal Resistivity of Ground

Thermal Resistivity of Soil (°Cm/W)	0.7	1.0	1.2	1.5	2.0	2.5	3.0
Rating Factor	1.14	1.0	0.93	0.84	0.74	0.67	0.61

Correction Factors for Various Depth of Laying

Rating Factor
1.09
1.05
1.03
1.01
1.00

The permissible short circuit current of a cable is determined by the maximum permissible conductor temperature and by the duration of the short circuit current. At high peak currents, the dynamic forces between the conductors must be taken into account.

The short circuit capacity of the conductor and metallic shield of a cable are related principally to their heat capacities and are limited by the maximum temperature permitted under short circuit XLPE power are as follow.

From the two graphs, the short circuit capacity of copper or aluminum conductors (based on a temperature rise from 90° C to 250° C) can be determined.

Logarithmic interpolation between the curves will give estimated values for the various duration.

The curves may be used also to determine the amount of conducting material required to carry a known short circuit current for a given duration.

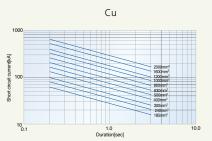
Copper Conductor

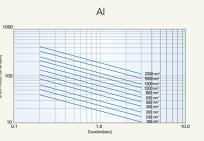
According to IEC 60949 curves based on formula

$$Is = \varepsilon \times 226 \frac{S}{\sqrt{t}} \sqrt{\ln \frac{\theta_f + 234}{\theta_i + 234}}.$$

where

- Is = Permissible Short Circuit Current (A)
- ε = Factor to allow for heat loss into the Adjacent Components
- S = Cross-Sectional Area of Conductor (mm²)
- t = Duration of Short Circuit (s)
- θ_f = Final Temperature (250°C)
- θ_i = Initial Temperature (90°C)

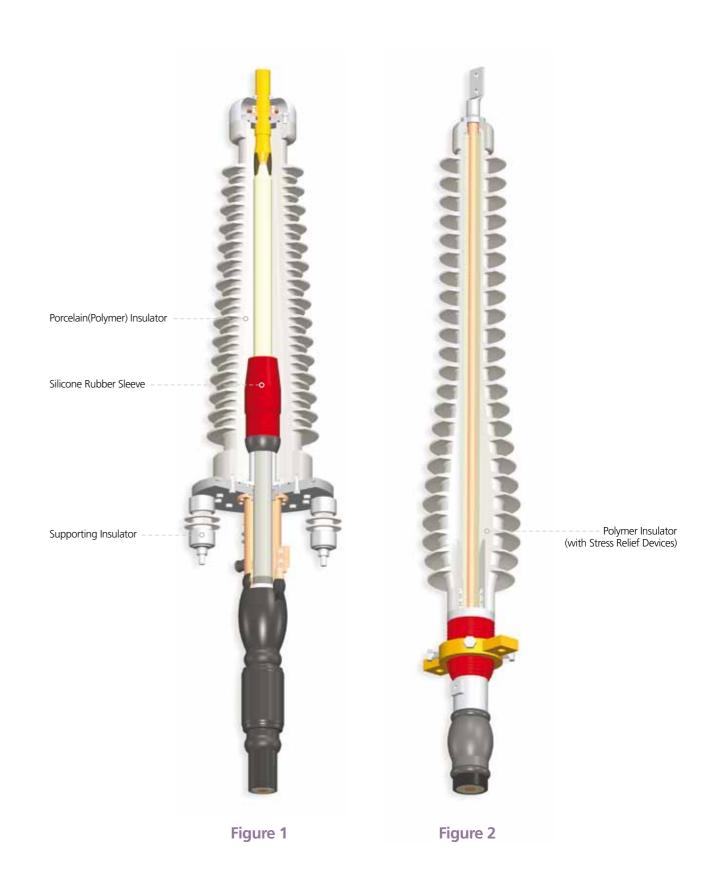

Aluminum Conductor


According to IEC 60949 curves based on formula

$$Is = \varepsilon \times 148 \frac{S}{\sqrt{t}} \sqrt{\ln \frac{\theta_f + 22}{\theta_f + 22}}$$

where

- Is = Permissible Short Circuit Current (A)
- ε = Factor to allow for heat loss into the Adjacent Components
- S = Cross-Sectional Area of Conductor (mm²)
- t = Duration of Short Circuit (s)
- $\theta_{\rm f}$ = Final Temperature (250°C)
- θ_i = Initial Temperature (90°C)


7.00 Accessories for EHV Cable Systems

LS Cable & System has developed and manufactured a wide range of terminations and joints for Extra High Voltage(EHV) cable system since 1983. Prefabricated terminations and tape molded joints are installed for 154kV cable system in domestic market. A new advanced accessories, which is called prefabricated and premolded joints, were developed and supplied to many countries in the world. Cable systems from 132kV up to 400kV has been certified through the type test by many international independent institutes (KEMA, CESI, KERI).

Pre-qualification tests for 345kV and 400kV cable systems in accordance with latest IEC standard were carried out successfully by the KEMA and KERI.

- 7.01 Outdoor Terminations for 66kV~110kV
- 7.02 Outdoor Terminations for 132kV~275kV
- 7.03 Outdoor Terminations for 345kV~500kV
- 7.04 SF₆ Gas Insulated Terminations
- 7.05 Oil-Immersed Terminations
- 7.06 Pre-Moulded Joint (PMJ)
- 7.07 Link Box
- 7.08 Transition Joint
- 7.09 Optical Cable & Joint

7.01 Outdoor Terminations for 66kV~110kV

7.02 Outdoor Terminations for 132kV~275kV

The outdoor terminations for 66~110kV are classified on two types. One is based on silicone rubber sleeve(so called Pre-moulded type, Figure1). The other is based on silicone rubber housing(so called dry type, Figure2). Pre-moulded silicone rubber sleeve is designed to fit with controlled interference over the cable insulation and is able to follow the cable's diameter variations still guaranteeing under any service condition a sufficient positive pressure to control the electric field concentration. This uses elastic retention of silicone material itself. The termination is filled with an insulating compound up to a level where the electric field is substantially reduced. The termination base plate and the cable's metallic sheath are electrically insulated

from the supporting structure by means of stand off insulators designed to withstand both mechanical and electrical stresses in services. Upon request of the customer, either porcelain or composite hollow insulator can be supplied. And the insulator can be supplied in brown or grey color. The maximum allowable cable conductor size is 3000mm²(6000kcmil). The latter uses pre-moulded silicone housing with built in sleeve. They completely free from any Liquid insulating materials. The high electrical field area of the termination surface covered with skirts.

The housing is whole preformed and can be supplied in grey color. This has advantage like easier installation. The maximum allowable cable conductor size 3000mm²(6000kcmil). The main insulation components are fully examined and tested in the factory.

Rating & Dimension(Based on pre-moulded type)

Max. Voltage	BIL	Max. Height	Max. Weight	Max. Creepage Distance
72.5	325	1000	100	2500
123	550	1500	200	4300

Rating & Dimension(Based on Dry type)

Max. Voltage	BIL	Max. Height	Max. Weight	Max. Creepage Distance
kV				mm
72.5	325	980	100	2500
123	550	1350	200	4300

Selection of insulators with respect to polluted conditions (Based on IEC60815)

Pollution	I (Light)	I (Medium)	II (Heavy)	

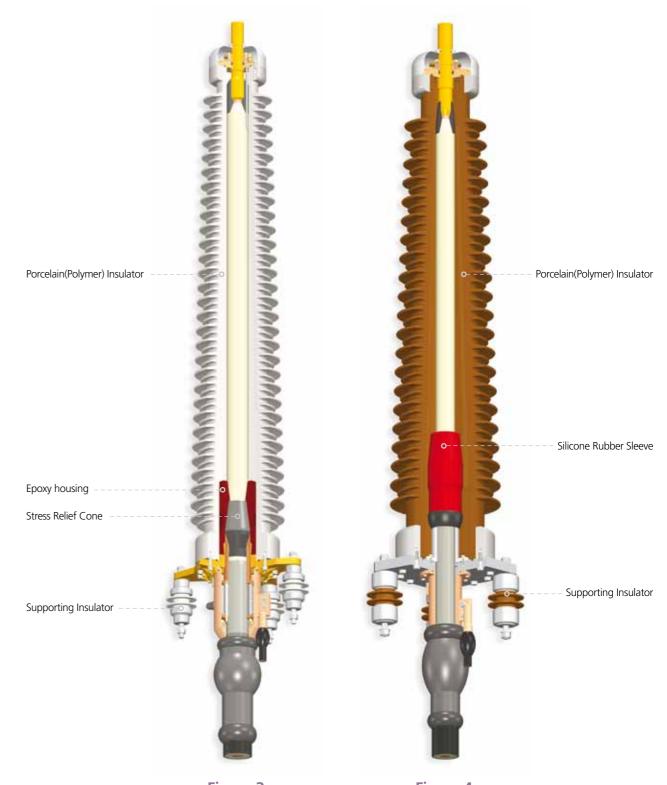


Figure 3

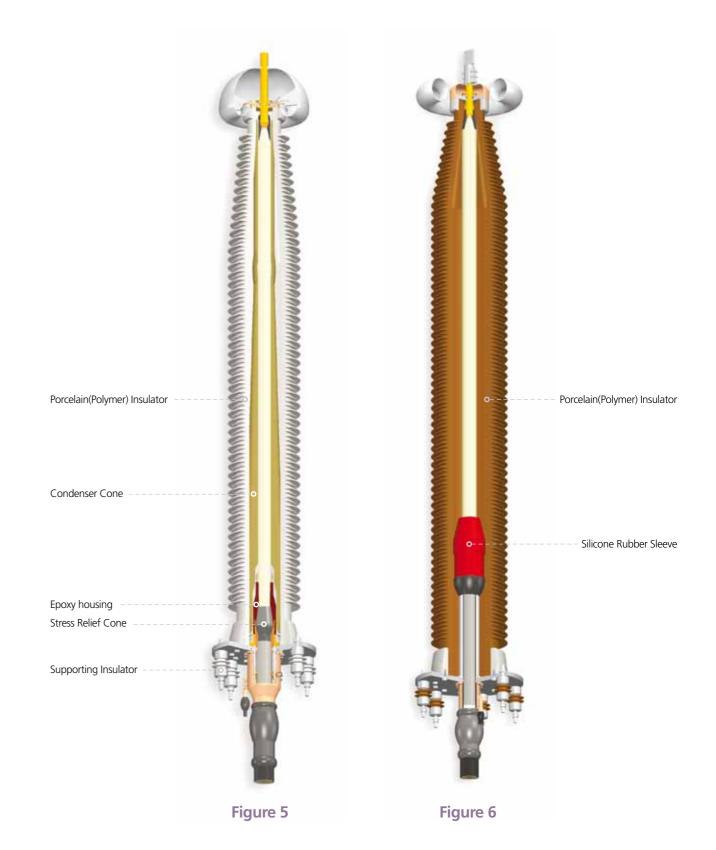
Figure 4

7.03 Outdoor Terminations for 345kV~500kV

The outdoor termination for 132~275kV is classified into two types. One is based on the EPR-based rubber stress relief cone with an epoxy housing(so called pre-fabricated type, figure3). The other is based on the silicone rubber sleeve(so called pre-molded type, figure4).

The former uses mechanical devices to maintain the interface pressure. The latter uses elastic retention of silicone material itself. Premoulded silicone rubber sleeve is designed to fit with controlled interference over the cable insulation and is able to follow the cable's diameter variations still guaranteeing under any service condition a sufficient positive pressure to control the electric field concentration.

The termination base plate and the cable's metallic sheath are electrically insulated from the supporting structure by means of stand


off insulators designed to withstand both mechanical and electrical stresses in services. Upon request of the customer, either porcelain or composite hollow insulator can be supplied. And the insulator can be supplied in brown or grey colour. In addition upon request of the customer, arcing horn and shield ring can be supplied. The termination is filled with an insulating compound up to a level where the electric field is substantially reduced. The main insulation components are fully examined and tested in the factory. The maximum allowable cable conductor size is 3000mm²(6000kcmil).

Rating & Dimension(Based on pre-moulded type)

Max. Voltage		Max. Height	Max. Weight	Max. Creepage Distance
145	650	2410	700	5000
170	750	2410	800	6000
275	1050	3500	900	8400

Selection of insulators with respect to polluted conditions (Based on IEC60815)

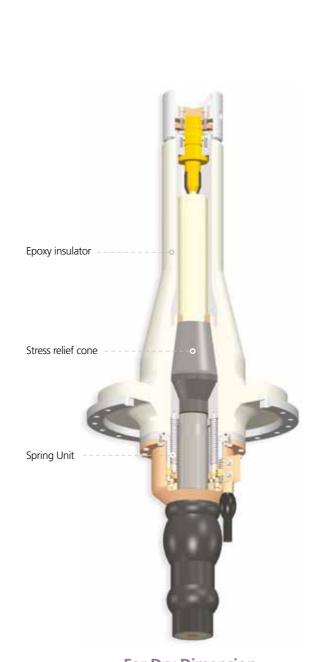
Pollution	I (Light)	II (Medium)	II (Heavy)	

7.04 SF₆ Gas Insulated Terminations

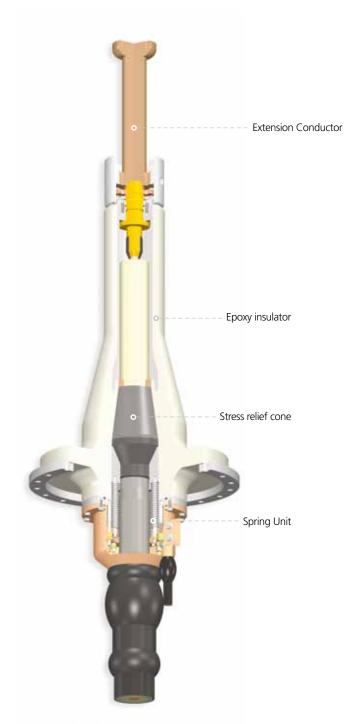
The outdoor termination for 345~500kV is classified into two types. One is based on the EPR-based stress relief cone with the epoxy housing and the oil-impregnated cylindrical capacitor cone is added to secure the uniform longitudinal voltage distribution all along the termination(so called condenser cone type, figure 5). The other is based on silicone rubber sleeve(so called pre-molded type, figure 6).

The former uses mechanical devices to maintain the interface pressure and the latter uses elastic retention of silicone material itself.

Pre-moulded silicone rubber sleeve is designed to fit with controlled interference over the cable insulation and is able to follow the cable's diameter variations still guaranteeing under any service condition a sufficient positive pressure to control the electric field concentration.


The termination base plate and the cable's metallic sheath are electrically insulated from the supporting structure by means of stand off insulators designed to withstand both mechanical and electrical stresses in services. Upon request of the customer, either porcelain or composite hollow insulator can be supplied. And the insulator can be supplied in brown or grey colour. In addition upon request of the customer, arcing horn and shield ring can be supplied. The termination is filled with an insulating compound up to a level where the electric field is substantially reduced. The main insulation components are fully examined and tested in the factory. The maximum allowable cable conductor size is 3000mm²(6000kcmil).

Rating & Dimension(Based on pre-moulded type)


Max. Voltage	BIL	Max. Height	Max. Weight	Max. Creepage Distance
362	1175	4300	1700	13000
420	1425	4300	2000	14500
550	1550	5000	2500	20000

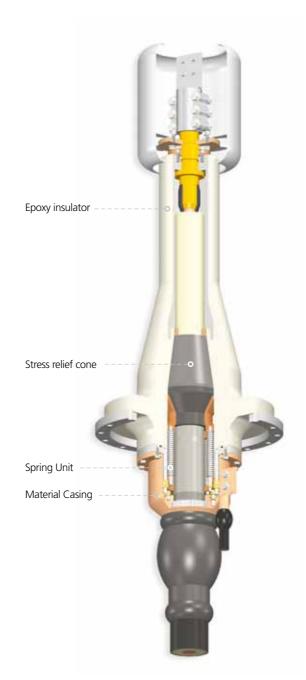
Selection of insulators with respect to polluted conditions (Based on IEC60815)

Pollution	I (Light)	II (Medium)	II (Heavy)	

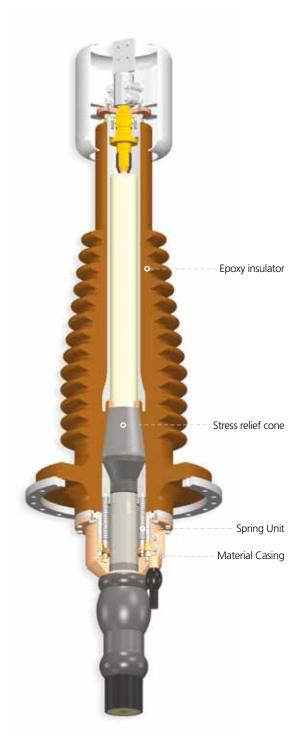
For Fluid Filled Dimension

7.05 Oil-Immersed Terminations

The construction of SF₆ gas insulated terminations is based on the EPR(Ethylene-Propylene Rubber) or LSR(Liquid Silicone Rubber) - based stress relief cone and the epoxy resin housing. They are mechanical devices to maintain the interface pressure. Stress relief cone and mechanical devices are designed to fit with controlled interference over the cable insulation and is able to follow the cable's diameter variations still guaranteeing under any service condition a sufficient positive pressure to control the electric field concentration.



They also use epoxy insulating plate to isolate between cable sheath and GIS chamber. The SVLs(Sheath Voltage Limiter) can be installed to protect epoxy insulating plate from switching impulse. Upon request


of the customer, we can supply three type of leading conductors. That is normal type, blind-ended type, plug-in type. Design and scope of delivery are fully complying with IEC60859, IEC62271-209 and possibly adjusted to various needs of customers. The main insulation components are fully examined and tested in the factory. They are currently available at the voltage range up to 500kV and the maximum allowable cable conductor size is 3000mm²(6000kcmil).

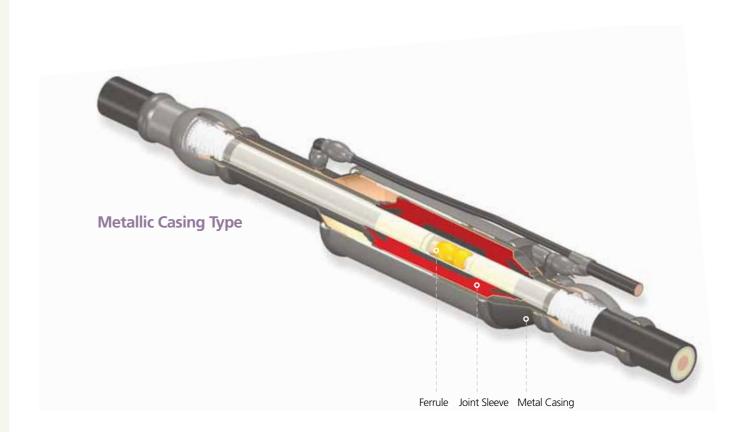
Rating & Dimension (Based on IEC 60859)

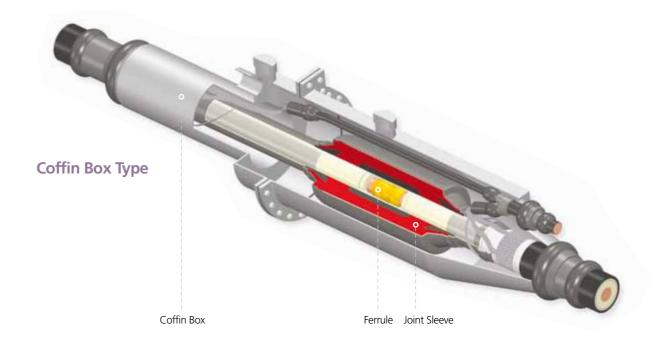
Max. Voltage	BIL	Max. Height	Dimension of base plate	Max. Weight
kV				kg
72.5	325	583	270	120
123	550	470	320	130
145	650	470	320	150
170	750	470	320	170
245	1050	620	582	280
420	1425	960	640	500
550	1550	960	640	600

Below 220kV

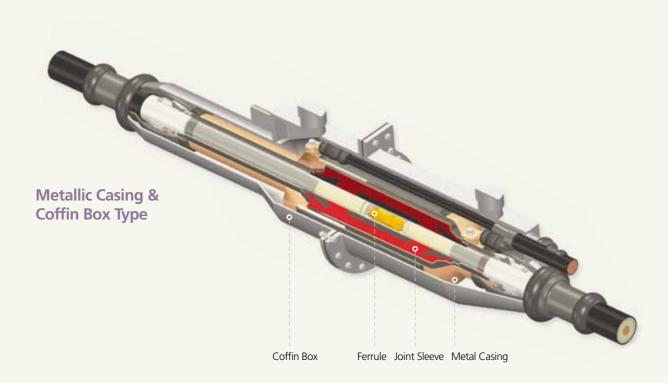
Above 345kV

7.06 Pre-Moulded Joint(PMJ)


The construction of oil immersed terminations is based on the EPR(Ethylene-Propylene Rubber) or LSR(Liquid Silicone Rubber) - based stress relief cone and the epoxy housing. This is similar to gas insulated sealing end. But they use shield ring with insulating paper or epoxy insulated layer to prevent flashover in transformer. They are mechanical devices to maintain the interface pressure. Stress relief cone and mechanical devices are designed to fit with controlled interference over the cable insulation and is able to follow the cable's diameter variations still guaranteeing under any service condition a sufficient positive pressure to control the electric field concentration. The main insulation components are fully examined and tested in the

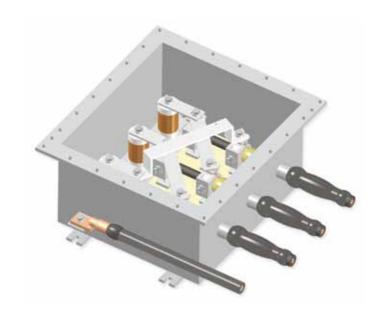


factory. Dimensions of base paste are complying with various needs of customers. They are currently available at the voltage range up to 500kV and the maximum allowable size is 3000mm²(6000kcmil).


Rating & Dimension

Max. Voltage	BIL	Max. Height	Dimension of base plate	Max. Weight
72.5	325	686	270	130
123	550	841	320	140
145	650	841	320	180
170	750	841	320	180
245	1050	1040	582	280
420	1425	1440	640	520
550	1550	1440	640	620

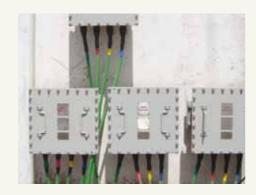
7.07 Link Box

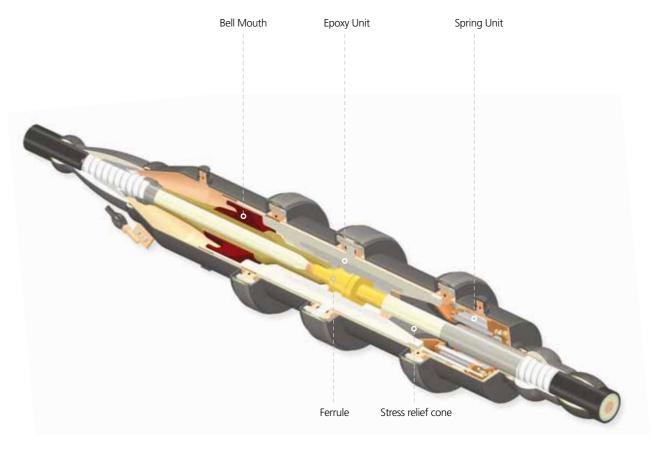


The single piece pre-moulded type rubber joint is based on silicone insulation embedded with two semi-conductive stress relief cones and one high voltage electrode. Without any mechanical devices, the interface pressure is safely maintained with elastic retention of material itself. Semi-conductive stress relief cones and electrode are designed to fit with controlled interference over the cable insulation and is able to follow the cable's diameter variations still guaranteeing under any service condition a sufficient positive pressure to control the electric field concentration. Upon request of the customer, outer casing is designed(metalic casing, coffin box, and metalic casing with coffin box). They use filling compound in outer casing. In case of sheath sectionalizing joint, we use insulating plate made of epoxy or FRP to disconnect between cable sheathes. The main insulation components and outer casing components are factory-made and fully tested before delivering to the site. The cost-efficient and simplified design along with easy and fast installation meets the various needs of customers. Installation tools can be provided if requested by customers. They are currently available at the voltage range up to 500kV and the maximum allowable conductor size is 3000mm²(6000kcmil).

Rating & Dimension(Based on Coffin Box Type)

Max. Voltage	Max. Length	Max. Outer Dia.	Max. Weight
	mm		
72.5	2000	500	90
123	2000	500	120
145~170	2000	500	150
245~300	2200	550	200
362~420	2600	700	300
550	2700	700	400

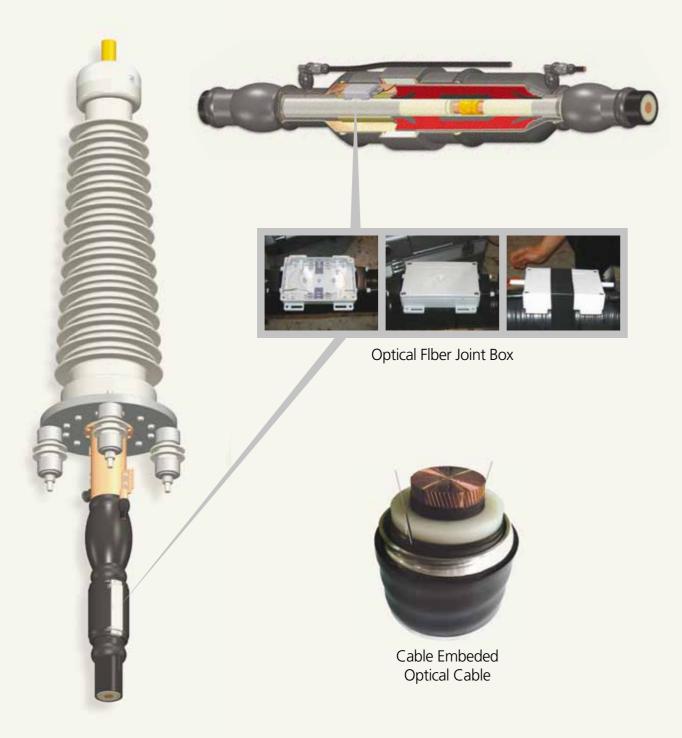

Buried Type: Link Box for cross bonding(3-1Way)


Gantry Mounted Type: Link Box for Earthing(3-1Way)

7.08 Transition Joint

Link Boxes are used at the end of cable termination to gain easy access to the cable metallic sheath and to limit the transient over-voltage induced on the metallic sheath by the lighting, switching operations and fault currents. Cross bonding(C.B.) link boxes allow metallic sheath to be transposed at cable joints with surge voltage suppression and reduction of circulation currents. Sheath voltage limiters(SVLs) in link box are the gapless ZnO arresters, which have the insulation resistance above $100 \text{M}\Omega$ at test voltage so that the sheath insulation can be checked without disconnection SVLs.

Standard Product	Box Type	Approx. Size	Bonding Lead	Approx. Weight
Link Box for Earthing(1-1Way)	Gantry Mounted / Buried	150X150 200X200	Single Core	15 30
Link Box for Earthing(3-1Way)	Gantry Mounted / Buried	300X500 350X600	Single Core	30 50
Link Box with SVLs(3-1Way)	Gantry Mounted / Buried	450X500 500X550	Single Core	40 70
Link Box for Cross-Bonding .(3-1Way)	Gantry Mounted / Buried	500X550 550X600	Concentric	50 80
Link Box for Bonding & Earthing (3-1Way)	Buried	700X500	Concentric	80
Link Box for Earthing with SVL (3-1way)	Buried	700X500	Concentric	50

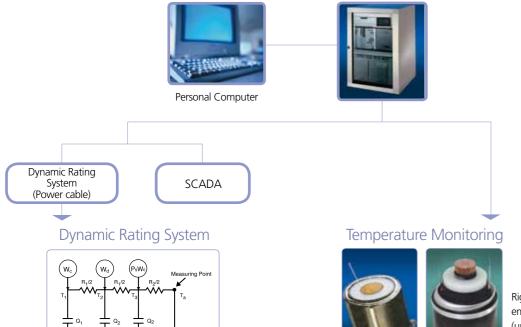

The transition joint connects between existing oil-filled cables and extruded dielectric cables. They comprise the stop joint with oil-impregnated paper insulation and epoxy bell mouth at side of oil-filled cables. They also comprise prefabricated type joint with stress relief cone based EPR(Ethylene-Propylene Rubber) and mechanical devices at side of extruded dielectric cables. They are designed to fit with controlled interference over the cable insulation and is able to follow the cable's diameter variations still guaranteeing under any service condition a sufficient positive pressure to control the electric field concentration. Each components fully examined and tested in the factory. They are currently available at the voltage range up to 300kV and the maximum allowable cable conductor size is 3000mm²(6000kcmil).

Rating & Dimension

Max. Voltage	Max. Length	Max. Outer Dia.	Max. Weight	
kV				
145	1800	290	220	
170	1800	320	250	
245	2000	360	300	

7.09 Optical Cable & Joint

These type for power cable are very useful to measure distributed temperature. Especially optical cable located the sensing fiber to the cable core provides a better indication of conductor temperature. We can supply optical joint to connect optical fiber cable.



- 8.01 Real Time Thermal Monitoring-Underground Power Cable System
- 8.02 On-Site PD Detection System

8.01 Real Time Thermal Monitoring-Underground Power Cable System

8.02 On-Site PD Detection System

Real time thermal monitoring cooperated with DTS* system using optical fiber as the sensor provides high efficiency and reliability of power cable system.

Thermal models and real-time temperature measurement can provide dynamic rating system. And this system allows qualification of actual cable capacity, cable conditions and environmental parameters critical to the stability and longevity of the cable system.

Under Ground Cable Thermal Modeling

Right: Sensor fiber embedded cable (under the sheath)

Left: Sensor fiber

These types of power cable are very useful to measure distributed temperature. Especially, the right cable, located the sensing fiber closer to the cable core, provides a better indication of conductor temperature.

Dynamic Cable Rating Systems (R-TAS[™])

• Cable Temperature

- Joint Temperature
- Ambient Temperature
- System Load Current

- IEC 60287
- Real Time Algorithms
- Power Cable Thermal Model

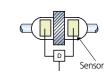
- Conductor Temperature
- · Circuit Rating Capability (Steady State & Emergency)
- Time to Over-Temperature
- Over Current Alarms
- Thermal/Loading History

On-Site PD Detection based on high frequency PD measurement can be a highly effective method to increase the reliability of XLPE power cable system not only as afterlaying test but also as on-site insulation diagnosis.

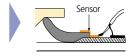
Characteristics of On-Site PD Detection System

- High sensitivity by tuning low noise frequency range
- System configuration without line-off
- Easy installation of PD sensor
- Pattern recognition by Φ -q-n analysis
- PD localization using PD attenuation property

Sensor Type


HFCT

- Installation on Ground Wire or Cross-Bonding Wire of Joint
- Measuring Frequency Range: More than 2MHz (Depends on the type of HFCT)


Outer Type Capacitive Sensor

- Installation on Outer Sheath of Joint (Applicable only for Insulating Joint)
- Measuring Frequency Range : 1MHz ~ 50MHz

Inner Type Capacitive Sensor

- Installation on Semi-Conductive Layer in Joints
- Measuring Frequency Range : 2 ~ 20MHz

62 Monitoring & Diagnosis System Monitoring & Diagnosis System 63

^{*}Distributed Temperature Sensor: Supplied by Sensa, UK. For more information, refer to www.sensa.org

9.00 Appendix

- 9.01 Type Test/Pre-Qualification Test Certificates
- 9.02 ISO Certificates

9.01 Type Test/Pre-Qualification Test Certificates

The reliability of XLPE cable systems are fully verified by internationally accredited independent laboratories, KEMA (Netherlands), CESI (Italy), Kinetrics (Canada) and KERI (Korea).

Certificates for XLPE cable system over 230kV

Year	Voltage Grade	Spec.	Test Items	Certificate Issued by	Test
1999	400kV, 1200mm ²	IEC 62067	Cable, PJ, GIS & Outdoor Termination	KEMA	Type Test
2001 -	230kV, 1200mm ²		Cable, PMJ, GIS & Outdoor Termination	KEMA	Type Test
	345kV, 2000mm ²	- IEC 62067	Cable, PJ, GIS & Outdoor Termination	KERI(KEPCO)	Type Test
2002 -	345kV, 2000mm ²	IFC C2067	Cable, PJ, GIS & Outdoor Termination	KERI(KEPCO)	PQ
	400kV, 1200mm ²	– IEC 62067	Cable, PJ, GIS & Outdoor Termination	KEMA	PQ
2003	345kV, 2500mm ²	IEC 62067	Cable, PJ, GIS & Outdoor Termination	KEMA	Type Test
2004 -	345kV, 2500mm ²		Cable, GIS & Outdoor Termination	KEMA	PQ
	400kV, 2500mm ²	– IEC 62067	Cable, PMJ, GIS & Outdoor Termination	KEMA	Type Test
2006 —	230kV 800SQ		Cable, GIS, Outdoor Termination	SGS	Type Test
	345kV 2500SQ	- IEC 62067	Cable, PMJ, Outdoor Termination	KEMA	Type Test
2007 -	345kV1500SQ	IEC 62067	Cable, PMJ, Outdoor Termination	KEMA	Type Test
	380kV2500SQ	– IEC 62067	Cable, GIS, Outdoor Termination	KEMA	Type Test
2008	345kV2500SQ	IEC 62067	Cable, GIS, PMJ, Outdoor Termination	KERI(KEPCO)	Type Test
2009	500kV 2500SQ	IEC 62067	Cable, GIS, PMJ, Outdoor Termination	KEMA, CEPRI	Type Test
2011 -	220kV 1000SQ	IF.C. C20.C7	Cable, GIS, PMJ, Outdoor Termination	KEMA	Type Test
	2250kV 2500SQ(20t)	- IEC 62067	Cable, GIS, PMJ, Outdoor Termination	KEMA	Type Test
2012	400kV 2500SQ	IEC 62067	Cable(Enamelled Cu), PMJ, GIS, Outdoor Termination	KEMA	Type Test
2013	400kV 2500SQ	IEC 62067	Cable, PMJ, GIS, Outdoor Termination	CESI	PQ
	230kV 3500KCM	AEIC CS9	Cable, PMJ, GIS, Outdoor Termination	KEMA	Type Test
2014	380kV 2500SQ	IEC 62067	Cable, PMJ, GIS, Outdoor Termination	KEMA	Type Test
2015	500kV 2500SQ	IEC 62067	Cable, PMJ, GIS, Outdoor Termination	KEMA, CEPRI	PQ

Appendix 65

9.02 ISO Certificates

We do what it takes to earn quality certifications like ISO 14001, ISO 9001, and ISO/TS 16949 which sets standards for process control and manufacturing flow.

MEMO

66 MEMO 67

GLOBAL

More than 60 Factories, **Sales and Production Sites** in 20 Countries.

- Factory
- Sales office
- Branch office

Gumi Plant EHV / MV / LV cable UTP, Coaxial cable Overhead cable, Bus duct

Indong Plant

Donghae Plant Submarine cable Industrial specialty cable

LSHQ(Yichang) EHV / MV / LV cable

LSCW(Wuxi) Industrial devices cable Automotive cable Harness & module Aluminum, Bus duct

LS-VINA(Haiphong) EHV / MV / LV cable SCR, ACSR Overhead cable

LSCV(HO Chi Minh) MV / LV cable UTP, Optical cable Overhead cable

LSCI(Bawal) EHV / MV / LV cable Overhead cable

LSCUS(Tarboro) Control, Instrument cable

LS EV Poland./LSCP

(Dzierzoniow) Automotive battery components Optical cable

www.lscns.com LS EHV Cable System

12F, LS Tower, 127, LS-ro, Dongan-gu, Anyang-si, Gyeonggi-do, 14119, Korea Tel. +82-2-2189-9114

©2020 LS Cable & System Ltd. All right reserved.

This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and recompilation. No part of this product or document may be reproduced in any form by any means without prior written authorization of LS Cable&System and its licensors, if any.

Products shown on this catalog are subject to change without any prior notice.